mirror of
https://github.com/qwjyh/QuantumLegos.jl.git
synced 2024-11-21 22:50:12 +09:00
init (migrating and renaming)
This commit is contained in:
commit
f772e27182
19 changed files with 2262 additions and 0 deletions
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
|
@ -0,0 +1,6 @@
|
|||
*.jl.*.cov
|
||||
*.jl.cov
|
||||
*.jl.mem
|
||||
/Manifest.toml
|
||||
/docs/Manifest.toml
|
||||
/docs/build/
|
21
LICENSE
Normal file
21
LICENSE
Normal file
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2024 qwjyh <urataw421@gmail.com> and contributors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
31
Project.toml
Normal file
31
Project.toml
Normal file
|
@ -0,0 +1,31 @@
|
|||
name = "QuantumLegos"
|
||||
uuid = "6c892f99-6e80-4382-8dc3-97545b5cb80e"
|
||||
authors = ["qwjyh <urataw421@gmail.com>"]
|
||||
version = "0.1.0-DEV"
|
||||
|
||||
[deps]
|
||||
IterTools = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
|
||||
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
|
||||
[compat]
|
||||
AbstractAlgebra = "0.34"
|
||||
Aqua = "0.8"
|
||||
Documenter = "1"
|
||||
IterTools = "1.8"
|
||||
JET = "0.8"
|
||||
LinearAlgebra = "1"
|
||||
StaticArrays = "1"
|
||||
Test = "1"
|
||||
julia = "1.9"
|
||||
|
||||
[extras]
|
||||
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
|
||||
Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595"
|
||||
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
|
||||
JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[targets]
|
||||
test = ["AbstractAlgebra", "Aqua", "DataStructures", "Documenter", "JET", "LinearAlgebra", "Test"]
|
64
README.md
Normal file
64
README.md
Normal file
|
@ -0,0 +1,64 @@
|
|||
# Legos
|
||||
|
||||
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://qwjyh.github.io/QuantumLegos.jl/stable/)
|
||||
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://qwjyh.github.io/QuantumLegos.jl/dev/)
|
||||
[![Build Status](https://github.com/qwjyh/QuantumLegos.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/qwjyh/QuantumLegos.jl/actions/workflows/CI.yml?query=branch%3Amain)
|
||||
<!-- [![Coverage](https://codecov.io/gh/qwjyh/QuantumLegos.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/qwjyh/QuantumLegos.jl) -->
|
||||
[![Aqua](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl)
|
||||
|
||||
## How-Tos for Julia beginners
|
||||
### How to get Julia
|
||||
Download binary from https://julialang.org/downloads/.
|
||||
Or use [juliaup](https://github.com/JuliaLang/juliaup)(recommended).
|
||||
|
||||
### How to run (for dev.)(init)
|
||||
1. clone this repo
|
||||
2. cd to here
|
||||
3. `julia --project`
|
||||
4. type `]` to enter Pkg mode in REPL.
|
||||
5. `instantiate` to download all dependencies
|
||||
6. press backspace to exit Pkg mode
|
||||
7. `using Legos` to use (normally starts from here)
|
||||
|
||||
Recommended tools for REPL:
|
||||
- OhMyREPL: for syntax highlight and interactive history search in REPL
|
||||
- Revise: for auto-loading changes to the package
|
||||
|
||||
### How to build and browse docs locally(init)
|
||||
1. cd to `docs/`
|
||||
2. `julia --project`
|
||||
3. `]` to enter Pkg mode
|
||||
5. `Pkg> dev ..` to add `Legos` to available package
|
||||
4. `Pkg> instantiate`
|
||||
6. Exit Pkg mode(backspace) and `include("make.jl")` to build. Now you can exit julia REPL by `exit()` or `Ctrl-D`.
|
||||
7. Alternatively, run `julia --project make.jl` from any shell.
|
||||
8. To browse file on browser, I recommend either to use LiveServer.jl (from Pkg mode REPL, `add LiveServer`) and `julia -e 'using LiveServer; serve(dir="docs/build")'` or cd to `docs/build` and `python -m http.server --bind localhost`. Details on [Note on Documenter.jl docs](https://documenter.juliadocs.org/stable/man/guide/#Building-an-Empty-Document)
|
||||
|
||||
- You can stop the local server by just stopping LiveServer or python http.server (just `Ctrl-C`)
|
||||
- You can update the docs by `julia --project make.jl` on `docs/` and reload on your browser.
|
||||
|
||||
## TODO
|
||||
- [x] write test for CheckMatrix constructor
|
||||
- [x] add `Base.==` method for CheckMatrix
|
||||
- [x] implement checkmatrix constructor from stabilizer generator
|
||||
- [x] implement constructor for State
|
||||
- [x] implement initial constructor for State with only 1 lego and 0 edge
|
||||
- [x] implement action function on State
|
||||
- [x] implement tracing function for CheckMatrix
|
||||
- [ ] test for self-tracing
|
||||
- [x] implement map function from LegoLeg to checkmatrix index
|
||||
- [x] implement functions to glean stabilizer generator from CheckMatrix
|
||||
- [ ] test functions with examples on the paper
|
||||
- [x] improve perf of ref!
|
||||
- [ ] implement function to calculate enumerator polynomial
|
||||
|
||||
## ref! optimization
|
||||
before
|
||||
|
||||
![Benchmark of ref! vs AbstractAlgebra.rref](./docs/src/img/bench_ref_vs_aarref.jpg)
|
||||
|
||||
(so many allocs, take profile)
|
||||
|
||||
after
|
||||
|
||||
![Optimized](./docs/src/img/bench_ref_optimized.jpg)
|
6
docs/Project.toml
Normal file
6
docs/Project.toml
Normal file
|
@ -0,0 +1,6 @@
|
|||
[deps]
|
||||
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
|
||||
IterTools = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
|
||||
Legos = "6c892f99-6e80-4382-8dc3-97545b5cb80e"
|
||||
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
|
23
docs/make.jl
Normal file
23
docs/make.jl
Normal file
|
@ -0,0 +1,23 @@
|
|||
#! format: off
|
||||
using Legos
|
||||
using Documenter
|
||||
|
||||
DocMeta.setdocmeta!(Legos, :DocTestSetup, :(using Legos); recursive=true)
|
||||
|
||||
makedocs(;
|
||||
modules=[Legos],
|
||||
authors="",
|
||||
# repo="",
|
||||
sitename="Legos.jl",
|
||||
format=Documenter.HTML(;
|
||||
prettyurls=get(ENV, "CI", "false") == "true",
|
||||
edit_link="main",
|
||||
assets=String[],
|
||||
),
|
||||
pages=[
|
||||
"Home" => "index.md",
|
||||
"PauliOps" => "pauliops.md",
|
||||
"checkmatrix.md",
|
||||
"distance.md",
|
||||
],
|
||||
)
|
82
docs/src/checkmatrix.md
Normal file
82
docs/src/checkmatrix.md
Normal file
|
@ -0,0 +1,82 @@
|
|||
# Details on check matrix operations
|
||||
|
||||
## Basic features of check matrix
|
||||
|
||||
- All action on state can be represented as operations on check matrix.
|
||||
- QuantumLegos which don't connect each other are represented by block diagonal check matrix.
|
||||
|
||||
Thus, one needs only one check matrix to represent state.
|
||||
|
||||
- Generated group from generators represented by check matrix is invariant under row-swap and row-multiplying transforms on the check matrix.
|
||||
|
||||
Thus, one can freely perform these row operations on check matrices.
|
||||
|
||||
## Construction of check matrices and retrieving features
|
||||
|
||||
Use [`CheckMatrix`](@ref) from `Matrix{Bool}` and [`checkmatrix`](@ref) from `Vector{PauliOp}`.
|
||||
|
||||
```@docs
|
||||
CheckMatrix
|
||||
checkmatrix
|
||||
```
|
||||
|
||||
Get xpart and zpart of check matrix.
|
||||
|
||||
```@docs
|
||||
QuantumLegos.xpart
|
||||
QuantumLegos.zpart
|
||||
```
|
||||
|
||||
Get generators from check matrix with [`generators`](@ref).
|
||||
|
||||
```@docs
|
||||
generators
|
||||
```
|
||||
|
||||
See also, [`GeneratedPauliGroup`](@ref) and [`Base.Set`](https://docs.julialang.org/en/v1/base/collections/#Base.Set) to get group generated by generators.
|
||||
|
||||
## Direct sum
|
||||
|
||||
Used when adding lego without edge.
|
||||
|
||||
```@docs
|
||||
QuantumLegos.direct_sum
|
||||
```
|
||||
|
||||
## Self-tracing
|
||||
|
||||
### self-tracing
|
||||
|
||||
```@docs
|
||||
QuantumLegos.self_trace!
|
||||
```
|
||||
|
||||
During self-tracing, pre-formatting and post-formatting described below is performed.
|
||||
|
||||
### pre-formatting
|
||||
|
||||
```@docs
|
||||
QuantumLegos.eliminate_column!
|
||||
```
|
||||
|
||||
```@docs
|
||||
QuantumLegos.align_row!
|
||||
```
|
||||
|
||||
[`QuantumLegos.align_row!`](@ref)
|
||||
|
||||
By this process, all columns to be traced have `1`s on only 1st to 4th rows.
|
||||
So during [`QuantumLegos.self_trace!`](@ref), all stabilizers generated from top three rows are calculated and perform operator matching.
|
||||
|
||||
### post-formatting
|
||||
|
||||
Remove rows which are linear combinations of other rows.
|
||||
|
||||
```@docs
|
||||
QuantumLegos.ref!
|
||||
```
|
||||
|
||||
```@docs
|
||||
QuantumLegos.eliminate_dependent_row!
|
||||
```
|
||||
|
236
docs/src/distance.md
Normal file
236
docs/src/distance.md
Normal file
|
@ -0,0 +1,236 @@
|
|||
# How to calculate code distance from the state.
|
||||
|
||||
!!! warning "WIP"
|
||||
This document is not fully completed.
|
||||
|
||||
## Definition of code distance.
|
||||
|
||||
Let's consider encoding circuit with $1$ logical bit and $k$ physical qubits[^1].
|
||||
Then this encoding has two physical basis, $\ket{0}_L$ and $\ket{1}_L$.
|
||||
The **distance** of this encoding is the minimum bit flip required to convert between $\ket{0}_L$ and $\ket{1}_L$.
|
||||
|
||||
[^1]: Not all state can be formalized like this. TODO
|
||||
|
||||
## Classification of the stabilizers.
|
||||
|
||||
When treating `State`, the logical leg is not assigned and one can treat all stabilizers equally.
|
||||
However, if logical leg is assigned to the state, these stabilizers can be classified to $4$ groups.
|
||||
|
||||
1. stabilizers on physical qubits
|
||||
2. $\bar{X}$, which corresponds to logical $X$
|
||||
3. $\bar{Z}$, which corresponds to logical $Z$
|
||||
4. $\bar{Y}$, which corresponds to logical $Y$
|
||||
|
||||
Let $\ket{V}$ is the dual state of the channel or encoding map $[[n, 1, d]]$,
|
||||
|
||||
```math
|
||||
distance = \min_{S \in stabilizers} \#\left\{ i \mid \bar{Z}_i ≠ S_i \right\}
|
||||
```
|
||||
|
||||
## Calculating code distance from the check matrix.
|
||||
|
||||
TODO: nor required if the performance doesn't matter.
|
||||
|
||||
## Examples
|
||||
|
||||
### $[[5, 1, 3]]$ code
|
||||
|
||||
$[[5, 1, 3]]$ code has $4$ stabilizers generators, $XZZXI, IXZZX, XIXZZ, ZXIXZ$ and $2$ logical operators, $\bar{X} = XXXXX$ and $\bar{Z} = ZZZZZ$.
|
||||
Therefore, stabilizer generators for the corresponding state $[[6, 0]]$ is $IXZZXI, IIXZZX, IXIXZZ, IZXIXZ, XXXXXX, ZZZZZZ$.
|
||||
|
||||
Let's construct $[[6, 0]]$ state on QuantumLegos.jl.
|
||||
```jldoctest 1
|
||||
julia> using QuantumLegos
|
||||
|
||||
julia> stab_513 = pauliop.(["IXZZXI", "IIXZZX", "IXIXZZ", "IZXIXZ", "XXXXXX", "ZZZZZZ"])
|
||||
6-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IXZZXI")
|
||||
pauliop("IIXZZX")
|
||||
pauliop("IXIXZZ")
|
||||
pauliop("IZXIXZ")
|
||||
pauliop("XXXXXX")
|
||||
pauliop("ZZZZZZ")
|
||||
|
||||
julia> lego_513 = Lego(stab_513)
|
||||
Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IXZZXI"), pauliop("IIXZZX"), pauliop("IXIXZZ"), pauliop("IZXIXZ"), pauliop("XXXXXX"), pauliop("ZZZZZZ")])
|
||||
|
||||
julia> state_513 = State([lego_513], edge.([]))
|
||||
State(Lego[Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IXZZXI"), pauliop("IIXZZX"), pauliop("IXIXZZ"), pauliop("IZXIXZ"), pauliop("XXXXXX"), pauliop("ZZZZZZ")])], Tuple{LegoLeg, LegoLeg}[], CheckMatrix(Bool[0 1 … 0 0; 0 0 … 1 0; … ; 1 1 … 0 0; 0 0 … 1 1], 6, 6))
|
||||
|
||||
```
|
||||
|
||||
Then collect generators of the state.
|
||||
```jldoctest 1
|
||||
julia> normalizers = state_513.cmat |> generators |> GeneratedPauliGroup |> collect
|
||||
64-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIIIII")
|
||||
pauliop("IXZZXI")
|
||||
pauliop("IIXZZX")
|
||||
pauliop("IXYIYX")
|
||||
pauliop("IXIXZZ")
|
||||
pauliop("IIZYYZ")
|
||||
pauliop("IXXYIY")
|
||||
pauliop("IIYXXY")
|
||||
pauliop("IZXIXZ")
|
||||
pauliop("IYYZIZ")
|
||||
⋮
|
||||
pauliop("YYIZZI")
|
||||
pauliop("YXZYZX")
|
||||
pauliop("YIIXYX")
|
||||
pauliop("YXYXII")
|
||||
pauliop("YIXYXI")
|
||||
pauliop("YIZZIY")
|
||||
pauliop("YXIIXY")
|
||||
pauliop("YIYIZZ")
|
||||
pauliop("YXXZYZ")
|
||||
|
||||
```
|
||||
|
||||
Get stabilizer and normalizers of the $[[5, 1, 3]]$ code by assigning the first leg as logical.
|
||||
```jldoctest 1
|
||||
julia> stabs = filter(x -> x[1] == PauliOps.I, normalizers)
|
||||
16-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIIIII")
|
||||
pauliop("IXZZXI")
|
||||
pauliop("IIXZZX")
|
||||
pauliop("IXYIYX")
|
||||
pauliop("IXIXZZ")
|
||||
pauliop("IIZYYZ")
|
||||
pauliop("IXXYIY")
|
||||
pauliop("IIYXXY")
|
||||
pauliop("IZXIXZ")
|
||||
pauliop("IYYZIZ")
|
||||
pauliop("IZIZYY")
|
||||
pauliop("IYZIZY")
|
||||
pauliop("IYXXYI")
|
||||
pauliop("IZYYZI")
|
||||
pauliop("IYIYXX")
|
||||
pauliop("IZZXIX")
|
||||
|
||||
julia> norm_x = filter(x -> x[1] == PauliOps.X, normalizers)
|
||||
16-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("XXXXXX")
|
||||
pauliop("XIYYIX")
|
||||
pauliop("XXIYYI")
|
||||
pauliop("XIZXZI")
|
||||
pauliop("XIXIYY")
|
||||
pauliop("XXYZZY")
|
||||
pauliop("XIIZXZ")
|
||||
pauliop("XXZIIZ")
|
||||
pauliop("XYIXIY")
|
||||
pauliop("XZZYXY")
|
||||
pauliop("XYXYZZ")
|
||||
pauliop("XZYXYZ")
|
||||
pauliop("XZIIZX")
|
||||
pauliop("XYZZYX")
|
||||
pauliop("XZXZII")
|
||||
pauliop("XYYIXI")
|
||||
|
||||
julia> norm_y = filter(x -> x[1] == PauliOps.Y, normalizers)
|
||||
16-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("YYYYYY")
|
||||
pauliop("YZXXZY")
|
||||
pauliop("YYZXXZ")
|
||||
pauliop("YZIYIZ")
|
||||
pauliop("YZYZXX")
|
||||
pauliop("YYXIIX")
|
||||
pauliop("YZZIYI")
|
||||
pauliop("YYIZZI")
|
||||
pauliop("YXZYZX")
|
||||
pauliop("YIIXYX")
|
||||
pauliop("YXYXII")
|
||||
pauliop("YIXYXI")
|
||||
pauliop("YIZZIY")
|
||||
pauliop("YXIIXY")
|
||||
pauliop("YIYIZZ")
|
||||
pauliop("YXXZYZ")
|
||||
|
||||
julia> norm_z = filter(x -> x[1] == PauliOps.Z, normalizers)
|
||||
16-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("ZZZZZZ")
|
||||
pauliop("ZYIIYZ")
|
||||
pauliop("ZZYIIY")
|
||||
pauliop("ZYXZXY")
|
||||
pauliop("ZYZYII")
|
||||
pauliop("ZZIXXI")
|
||||
pauliop("ZYYXZX")
|
||||
pauliop("ZZXYYX")
|
||||
pauliop("ZIYZYI")
|
||||
pauliop("ZXXIZI")
|
||||
pauliop("ZIZIXX")
|
||||
pauliop("ZXIZIX")
|
||||
pauliop("ZXYYXZ")
|
||||
pauliop("ZIXXIZ")
|
||||
pauliop("ZXZXYY")
|
||||
pauliop("ZIIYZY")
|
||||
|
||||
```
|
||||
|
||||
These normalizers are generated from one logical operator and stabilizers.
|
||||
```jldoctest 1
|
||||
julia> map(x -> x .* pauliop("XXXXXX"), stabs) |> Set == Set(norm_x)
|
||||
true
|
||||
|
||||
julia> map(x -> x .* pauliop("ZZZZZZ"), stabs) |> Set == Set(norm_x)
|
||||
false
|
||||
|
||||
julia> map(x -> x .* pauliop("ZZZZZZ"), stabs) |> Set == Set(norm_z)
|
||||
true
|
||||
|
||||
julia> map(x -> x .* pauliop("YYYYYY"), stabs) |> Set == Set(norm_y)
|
||||
true
|
||||
|
||||
julia> using IterTools
|
||||
|
||||
julia> groupby(x -> x[1], normalizers) .|> Set == Set.([stabs, norm_x, norm_z, norm_y])
|
||||
true
|
||||
|
||||
```
|
||||
|
||||
Define a function to get weight of the operator.
|
||||
```jldoctest 1
|
||||
julia> function weight(x, i = 1)
|
||||
count(x[i:end] .!= PauliOps.I)
|
||||
end
|
||||
weight (generic function with 2 methods)
|
||||
|
||||
julia> weight(pauliop("XIXIXI"))
|
||||
3
|
||||
|
||||
julia> weight(pauliop("XIXIXI"), 2)
|
||||
2
|
||||
|
||||
```
|
||||
|
||||
Calculate coefficients of enumerator polynomial.
|
||||
```jldoctest 1
|
||||
julia> using DataStructures
|
||||
|
||||
julia> stabs .|> weight |> counter
|
||||
Accumulator{Int64, Int64} with 2 entries:
|
||||
0 => 1
|
||||
4 => 15
|
||||
|
||||
julia> function weight(i::Integer)
|
||||
Base.Fix2(weight, i)
|
||||
end
|
||||
weight (generic function with 3 methods)
|
||||
|
||||
julia> normalizers .|> weight(2) |> counter
|
||||
Accumulator{Int64, Int64} with 4 entries:
|
||||
0 => 1
|
||||
4 => 15
|
||||
5 => 18
|
||||
3 => 30
|
||||
|
||||
julia> [norm_x..., norm_y..., norm_z...] .|> weight(2) |> counter
|
||||
Accumulator{Int64, Int64} with 2 entries:
|
||||
5 => 18
|
||||
3 => 30
|
||||
|
||||
julia> [norm_x..., norm_y..., norm_z...] .|> weight(2) |> counter |> keys |> minimum
|
||||
3
|
||||
|
||||
```
|
||||
Code distance of the encoding is the minimum degree of the non-zero term in the normalizer's polynomial($B$) and not in the stabilizer's polynomial($A$).
|
||||
So the code distance of this encoding is $3$.
|
BIN
docs/src/img/bench_ref_optimized.jpg
Normal file
BIN
docs/src/img/bench_ref_optimized.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 32 KiB |
BIN
docs/src/img/bench_ref_vs_aarref.jpg
Normal file
BIN
docs/src/img/bench_ref_vs_aarref.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 72 KiB |
201
docs/src/index.md
Normal file
201
docs/src/index.md
Normal file
|
@ -0,0 +1,201 @@
|
|||
```@meta
|
||||
CurrentModule = QuantumLegos
|
||||
```
|
||||
|
||||
# QuantumLegos
|
||||
|
||||
Documentation for QuantumLegos.
|
||||
|
||||
All contents:
|
||||
|
||||
```@contents
|
||||
```
|
||||
|
||||
# Example
|
||||
|
||||
## CheckMatrix and defining Lego
|
||||
```jldoctest
|
||||
julia> using QuantumLegos
|
||||
|
||||
julia> stabilizers = pauliop.(["IIXXXX", "IIZZZZ", "ZIZZII", "IZZIZI", "IXXXII", "XIXIXI"])
|
||||
6-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIXXXX")
|
||||
pauliop("IIZZZZ")
|
||||
pauliop("ZIZZII")
|
||||
pauliop("IZZIZI")
|
||||
pauliop("IXXXII")
|
||||
pauliop("XIXIXI")
|
||||
|
||||
julia> cmat = checkmatrix(stabilizers)
|
||||
CheckMatrix with 6 generators, 6 legs:
|
||||
0 0 1 1 1 1 | 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 | 0 0 1 1 1 1
|
||||
0 0 0 0 0 0 | 1 0 1 1 0 0
|
||||
0 0 0 0 0 0 | 0 1 1 0 1 0
|
||||
0 1 1 1 0 0 | 0 0 0 0 0 0
|
||||
1 0 1 0 1 0 | 0 0 0 0 0 0
|
||||
|
||||
|
||||
julia> cmat.nlegs
|
||||
6
|
||||
|
||||
julia> cmat.ngens
|
||||
6
|
||||
|
||||
julia> cmat.cmat
|
||||
6×12 Matrix{Bool}:
|
||||
0 0 1 1 1 1 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 1 1 1 1
|
||||
0 0 0 0 0 0 1 0 1 1 0 0
|
||||
0 0 0 0 0 0 0 1 1 0 1 0
|
||||
0 1 1 1 0 0 0 0 0 0 0 0
|
||||
1 0 1 0 1 0 0 0 0 0 0 0
|
||||
|
||||
julia> # define lego
|
||||
|
||||
julia> lego = Lego(stabilizers)
|
||||
Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])
|
||||
|
||||
julia> lego.stabgens |> checkmatrix
|
||||
CheckMatrix with 6 generators, 6 legs:
|
||||
0 0 1 1 1 1 | 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 | 0 0 1 1 1 1
|
||||
0 0 0 0 0 0 | 1 0 1 1 0 0
|
||||
0 0 0 0 0 0 | 0 1 1 0 1 0
|
||||
0 1 1 1 0 0 | 0 0 0 0 0 0
|
||||
1 0 1 0 1 0 | 0 0 0 0 0 0
|
||||
|
||||
```
|
||||
|
||||
- [`pauliop`](@ref)
|
||||
- [`checkmatrix`](@ref) and [`CheckMatrix`](@ref)
|
||||
- [`Lego`](@ref)
|
||||
|
||||
## Defining and Updating State
|
||||
```jldoctest
|
||||
julia> using QuantumLegos
|
||||
|
||||
julia> stabilizers = pauliop.(["IIXXXX", "IIZZZZ", "ZIZZII", "IZZIZI", "IXXXII", "XIXIXI"])
|
||||
6-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIXXXX")
|
||||
pauliop("IIZZZZ")
|
||||
pauliop("ZIZZII")
|
||||
pauliop("IZZIZI")
|
||||
pauliop("IXXXII")
|
||||
pauliop("XIXIXI")
|
||||
|
||||
julia> lego = Lego(stabilizers)
|
||||
Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])
|
||||
|
||||
julia> # state with 1 lego, 0 leg
|
||||
|
||||
julia> st = State([lego, ], Tuple{LegoLeg, LegoLeg}[])
|
||||
State(Lego[Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])], Tuple{LegoLeg, LegoLeg}[], CheckMatrix(Bool[0 0 … 0 0; 0 0 … 1 1; … ; 0 1 … 0 0; 1 0 … 0 0], 6, 6))
|
||||
|
||||
julia> st.cmat.cmat
|
||||
6×12 Matrix{Bool}:
|
||||
0 0 1 1 1 1 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 1 1 1 1
|
||||
0 0 0 0 0 0 1 0 1 1 0 0
|
||||
0 0 0 0 0 0 0 1 1 0 1 0
|
||||
0 1 1 1 0 0 0 0 0 0 0 0
|
||||
1 0 1 0 1 0 0 0 0 0 0 0
|
||||
|
||||
julia> add_lego!(st, lego)
|
||||
State(Lego[Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")]), Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])], Tuple{LegoLeg, LegoLeg}[], CheckMatrix(Bool[0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0], 12, 12))
|
||||
|
||||
julia> st.cmat.cmat
|
||||
12×24 Matrix{Bool}:
|
||||
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
|
||||
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
|
||||
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
julia> # state with 2 legos, 0 leg
|
||||
|
||||
julia> st2 = State([lego, lego], Tuple{LegoLeg, LegoLeg}[])
|
||||
State(Lego[Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")]), Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])], Tuple{LegoLeg, LegoLeg}[], CheckMatrix(Bool[0 0 … 0 0; 0 0 … 0 0; … ; 0 0 … 0 0; 0 0 … 0 0], 12, 12))
|
||||
|
||||
julia> st == st2
|
||||
true
|
||||
```
|
||||
|
||||
## 2 Lego 1 edge state
|
||||
```jldoctest
|
||||
julia> using QuantumLegos
|
||||
|
||||
julia> stabilizers = pauliop.(["IIXXXX", "IIZZZZ", "ZIZZII", "IZZIZI", "IXXXII", "XIXIXI"])
|
||||
6-element Vector{StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIXXXX")
|
||||
pauliop("IIZZZZ")
|
||||
pauliop("ZIZZII")
|
||||
pauliop("IZZIZI")
|
||||
pauliop("IXXXII")
|
||||
pauliop("XIXIXI")
|
||||
|
||||
julia> lego = Lego(stabilizers)
|
||||
Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])
|
||||
|
||||
julia> state = State([lego, lego], edge.([((1, 3), (2, 3))]))
|
||||
State(Lego[Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")]), Lego{6}(6, StaticArraysCore.SVector{6, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXXXX"), pauliop("IIZZZZ"), pauliop("ZIZZII"), pauliop("IZZIZI"), pauliop("IXXXII"), pauliop("XIXIXI")])], Tuple{LegoLeg, LegoLeg}[(LegoLeg(1, 3), LegoLeg(2, 3))], CheckMatrix(Bool[1 0 … 0 0; 0 1 … 0 0; … ; 0 0 … 1 1; 0 0 … 0 1], 10, 10))
|
||||
|
||||
julia> state.cmat
|
||||
CheckMatrix with 10 generators, 10 legs:
|
||||
1 0 1 0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0
|
||||
0 1 0 1 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 1 1 1 0 0 1 1 1 | 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 1 0 1 0 1 | 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 1 0 1 1 | 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 | 1 0 0 1 1 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 | 0 1 1 0 1 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 | 0 0 1 1 1 0 0 1 1 1
|
||||
0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 0 1 1
|
||||
0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 1 0 1
|
||||
|
||||
|
||||
julia> pg = state.cmat |> generators |> GeneratedPauliGroup
|
||||
GeneratedPauliGroup{10}(StaticArraysCore.SVector{10, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("XIXIXIIIII"), pauliop("IXIXXIIIII"), pauliop("IIXXXIIXXX"), pauliop("IIIIIXIXIX"), pauliop("IIIIIIXIXX"), pauliop("ZIIZZIIIII"), pauliop("IZZIZIIIII"), pauliop("IIZZZIIZZZ"), pauliop("IIIIIZIIZZ"), pauliop("IIIIIIZZIZ")], IterTools.Subsets{Vector{StaticArraysCore.SVector{N, QuantumLegos.PauliOps.SinglePauliOp} where N}}(StaticArraysCore.SVector{N, QuantumLegos.PauliOps.SinglePauliOp} where N[pauliop("XIXIXIIIII"), pauliop("IXIXXIIIII"), pauliop("IIXXXIIXXX"), pauliop("IIIIIXIXIX"), pauliop("IIIIIIXIXX"), pauliop("ZIIZZIIIII"), pauliop("IZZIZIIIII"), pauliop("IIZZZIIZZZ"), pauliop("IIIIIZIIZZ"), pauliop("IIIIIIZZIZ")]))
|
||||
|
||||
julia> pauliop("XIIXIXIIXI") in pg
|
||||
true
|
||||
|
||||
```
|
||||
|
||||
# Internal(how it works)
|
||||
|
||||
## Notes on Overall flow
|
||||
Details on [^1]
|
||||
- state is translated to a single check matrix
|
||||
- the size is ≤ $N \times 2N$ where $N$ is maximum number of lego logs.
|
||||
- any contraction can be performed on this single check matrix
|
||||
- if the check matrix can be represented as direct sum of matrices with $k N$ columns where $k ∈ ℕ$, then they are not contracted
|
||||
|
||||
### Construction of State
|
||||
Construction of `State` is completed by calling `State` constructor recursively.
|
||||
|
||||
1. Construct `State` without edge. Just adding legos. Checkmatrix is just a direct sum of each lego's checkmatrix
|
||||
2. Concatenate each edges. During this operation, self tracing of checkmatrix is evaluated.
|
||||
|
||||
Each constructor calls action function (which is a map from `State` to `State`).
|
||||
Therefore, action functions can be used both for direct construction of `State` and action application to `State` during the game.
|
||||
|
||||
# API
|
||||
|
||||
```@index
|
||||
```
|
||||
|
||||
```@autodocs
|
||||
Modules = [QuantumLegos]
|
||||
Pages = ["game.jl"]
|
||||
```
|
||||
|
||||
[^1]: [C. Cao and B. Lackey, ‘Approximate Bacon-Shor code and holography’, J. High Energ. Phys., vol. 2021, no. 5, p. 127, May 2021, doi: 10.1007/JHEP05(2021)127.](https://doi.org/10.1007/JHEP05(2021)127)
|
||||
|
46
docs/src/pauliops.md
Normal file
46
docs/src/pauliops.md
Normal file
|
@ -0,0 +1,46 @@
|
|||
# PauliOps
|
||||
|
||||
submodule
|
||||
|
||||
## Example
|
||||
```jldoctest
|
||||
julia> using QuantumLegos
|
||||
|
||||
julia> p = PauliOps.single_pauliop('I')
|
||||
I::SinglePauliOp = 0
|
||||
|
||||
julia> typeof(p)
|
||||
Enum QuantumLegos.PauliOps.SinglePauliOp:
|
||||
I = 0
|
||||
X = 1
|
||||
Y = 2
|
||||
Z = 3
|
||||
|
||||
julia> pauliop("IXYZ")
|
||||
4-element PauliOp:
|
||||
I::SinglePauliOp = 0
|
||||
X::SinglePauliOp = 1
|
||||
Y::SinglePauliOp = 2
|
||||
Z::SinglePauliOp = 3
|
||||
|
||||
julia> typeof(ans)
|
||||
SVector{4, SinglePauliOp} (alias for StaticArraysCore.SArray{Tuple{4}, QuantumLegos.PauliOps.SinglePauliOp, 1, 4})
|
||||
|
||||
julia> PauliOps.I * PauliOps.X
|
||||
X::SinglePauliOp = 1
|
||||
|
||||
julia> PauliOps.X * PauliOps.Z
|
||||
Y::SinglePauliOp = 2
|
||||
|
||||
julia> pauliop("IIX") .* pauliop("XIY")
|
||||
3-element PauliOp:
|
||||
X::SinglePauliOp = 1
|
||||
I::SinglePauliOp = 0
|
||||
Z::SinglePauliOp = 3
|
||||
```
|
||||
|
||||
## API
|
||||
```@autodocs
|
||||
Modules = [PauliOps]
|
||||
```
|
||||
|
47
examples/t6_2legos_notebook.jl
Normal file
47
examples/t6_2legos_notebook.jl
Normal file
|
@ -0,0 +1,47 @@
|
|||
### A Pluto.jl notebook ###
|
||||
# v0.17.7
|
||||
|
||||
using Markdown
|
||||
using InteractiveUtils
|
||||
|
||||
# ╔═╡ 3c6bf5ec-909f-11ee-06bd-83347655e198
|
||||
begin
|
||||
import Pkg
|
||||
Pkg.develop(path = "..")
|
||||
using QuantumLegos
|
||||
end
|
||||
|
||||
# ╔═╡ 9088d661-7bf1-43fb-ab88-77fa325a5cf3
|
||||
stabilizers = pauliop.(["IIXXXX", "IIZZZZ", "ZIZZII", "IZZIZI", "IXXXII", "XIXIXI"])
|
||||
|
||||
# ╔═╡ f806287c-592d-476b-a912-205d2031fd93
|
||||
lego = Lego(stabilizers)
|
||||
|
||||
# ╔═╡ 93251f25-5829-45a7-8aed-f76c834050a9
|
||||
state = State([lego, lego], Tuple{LegoLeg, LegoLeg}[])
|
||||
|
||||
# ╔═╡ 924588fb-0020-47e6-a918-98084d1fabad
|
||||
state.cmat
|
||||
|
||||
# ╔═╡ 99f153a1-da44-499a-b8af-e5c484b70597
|
||||
QuantumLegos.self_trace!(state.cmat, 3, 9)
|
||||
|
||||
# ╔═╡ 726061b5-0d3a-4bf4-aebd-81a2c0fe7ea1
|
||||
state.cmat |> generators
|
||||
|
||||
# ╔═╡ 69a71bfd-81d3-4961-9051-5f19be20f286
|
||||
pg = state.cmat |> generators |> GeneratedPauliGroup |> collect
|
||||
|
||||
# ╔═╡ 656d8d7a-0ede-4621-99f0-9f83619c6a73
|
||||
pauliop("XIIXIXIIXI") in pg # example on Fig.6
|
||||
|
||||
# ╔═╡ Cell order:
|
||||
# ╠═3c6bf5ec-909f-11ee-06bd-83347655e198
|
||||
# ╠═9088d661-7bf1-43fb-ab88-77fa325a5cf3
|
||||
# ╠═f806287c-592d-476b-a912-205d2031fd93
|
||||
# ╠═93251f25-5829-45a7-8aed-f76c834050a9
|
||||
# ╠═924588fb-0020-47e6-a918-98084d1fabad
|
||||
# ╠═99f153a1-da44-499a-b8af-e5c484b70597
|
||||
# ╠═726061b5-0d3a-4bf4-aebd-81a2c0fe7ea1
|
||||
# ╠═69a71bfd-81d3-4961-9051-5f19be20f286
|
||||
# ╠═656d8d7a-0ede-4621-99f0-9f83619c6a73
|
204
src/PauliOps/PauliOps.jl
Normal file
204
src/PauliOps/PauliOps.jl
Normal file
|
@ -0,0 +1,204 @@
|
|||
"""
|
||||
Pauli operator
|
||||
"""
|
||||
module PauliOps
|
||||
|
||||
using StaticArrays
|
||||
using IterTools
|
||||
|
||||
export SinglePauliOp, PauliOp
|
||||
export single_pauliop, pauliop
|
||||
export weight, xweight, zweight
|
||||
export GeneratedPauliGroup
|
||||
|
||||
"""
|
||||
@enum SinglePauliOp begin
|
||||
I
|
||||
X
|
||||
Y
|
||||
Z
|
||||
end
|
||||
|
||||
Pauli Operator on a single qubit.
|
||||
"""
|
||||
@enum SinglePauliOp begin
|
||||
I
|
||||
X
|
||||
Y
|
||||
Z
|
||||
end
|
||||
|
||||
"""
|
||||
PauliOp{N}
|
||||
|
||||
Pauli operator on multiple qubits.
|
||||
"""
|
||||
const PauliOp{N} = SVector{N, SinglePauliOp}
|
||||
|
||||
"""
|
||||
single_pauliop(char::Char)::SinglePauliOp
|
||||
|
||||
Convert `char` to `SinglePauliOp`.
|
||||
"""
|
||||
function single_pauliop(char::Char)::SinglePauliOp
|
||||
char == 'I' && return I
|
||||
char == 'X' && return X
|
||||
char == 'Y' && return Y
|
||||
char == 'Z' && return Z
|
||||
throw(ArgumentError("invalid char for pauli operator (must be I, X, Y, or Z)"))
|
||||
end
|
||||
|
||||
function Base.String(p::SinglePauliOp)
|
||||
p == I && return "I"
|
||||
p == X && return "X"
|
||||
p == Y && return "Y"
|
||||
p == Z && return "Z"
|
||||
end
|
||||
|
||||
@inline function single_pauli_product(x::T, y::T)::T where {T <: SinglePauliOp}
|
||||
if x == I
|
||||
return y
|
||||
elseif y == I
|
||||
return x
|
||||
elseif x == y
|
||||
return I
|
||||
else
|
||||
x == X && y == Y && return Z
|
||||
x == X && y == Z && return Y
|
||||
x == Y && y == Z && return X
|
||||
return single_pauli_product(y, x)
|
||||
end
|
||||
end
|
||||
|
||||
Base.:(*)(x::T, y::T) where {T <: SinglePauliOp} = single_pauli_product(x, y)
|
||||
|
||||
"""
|
||||
pauliop(str::AbstractString)::PauliOp
|
||||
|
||||
Convert `str` to `PauliOp`.
|
||||
"""
|
||||
function pauliop(str::AbstractString)::PauliOp
|
||||
SVector(single_pauliop.(collect(str))...)
|
||||
end
|
||||
|
||||
Base.String(p::PauliOp) = join(String.(p))
|
||||
Base.show(io::IO, p::PauliOp) = print(io, "pauliop(\"$(String(p))\")")
|
||||
Base.summary(io::IO, p::PauliOp) = print(io, "$(length(p))-element PauliOp")
|
||||
# function Base.show(io::IO, ::MIME"text/plain", p::PauliOp)
|
||||
# if get(io, :compact, false)
|
||||
# print(io, String(p))
|
||||
# else
|
||||
# summary(io, p)
|
||||
# print(io, ": ", String(p))
|
||||
# end
|
||||
# end
|
||||
|
||||
"""
|
||||
weight(p::PauliOp, [init = 1])
|
||||
|
||||
Weight of the operator `p`, i.e. non \$I\$ operator.
|
||||
"""
|
||||
function weight(p::PauliOp, init::Integer = 1)
|
||||
# length(filter(!=(PauliOps.I), p))
|
||||
count = 0
|
||||
for i in eachindex(p)
|
||||
i < init && continue
|
||||
if p[i] != PauliOps.I
|
||||
count += 1
|
||||
end
|
||||
end
|
||||
count
|
||||
end
|
||||
|
||||
"""
|
||||
xweight(p::PauliOp, [init = 1])
|
||||
|
||||
Number of \$X, Y\$ in `p`.
|
||||
"""
|
||||
function xweight(p::PauliOp, init::Integer = 1)
|
||||
count = 0
|
||||
for i in eachindex(p)
|
||||
i < init && continue
|
||||
if p[i] == PauliOps.X || p[i] == PauliOps.Y
|
||||
count += 1
|
||||
end
|
||||
end
|
||||
count
|
||||
end
|
||||
|
||||
"""
|
||||
zweight(p::PauliOp, [init = 1])
|
||||
|
||||
Number of \$Z, Y\$ in `p`.
|
||||
a"""
|
||||
function zweight(p::PauliOp, init::Integer = 1)
|
||||
# length(filter(!=(PauliOps.I), p))
|
||||
count = 0
|
||||
for i in eachindex(p)
|
||||
i < init && continue
|
||||
if p[i] == PauliOps.Z || p[i] == PauliOps.Y
|
||||
count += 1
|
||||
end
|
||||
end
|
||||
count
|
||||
end
|
||||
|
||||
# should have compatibility with other packages like AbstractAlgebra?
|
||||
"""
|
||||
struct GeneratedPauliGroup
|
||||
|
||||
Iterator for group generated from `gens`.
|
||||
|
||||
GeneratedPauliGroup(gens::AbstractVector{T}) where {T <: PauliOp}
|
||||
|
||||
# Examples
|
||||
```jldoctest
|
||||
julia> gens = pauliop.(["IIXX", "IZZI"])
|
||||
2-element Vector{StaticArraysCore.SVector{4, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIXX")
|
||||
pauliop("IZZI")
|
||||
|
||||
julia> g = PauliOps.GeneratedPauliGroup(gens)
|
||||
GeneratedPauliGroup{4}(StaticArraysCore.SVector{4, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXX"), pauliop("IZZI")], IterTools.Subsets{Vector{StaticArraysCore.SVector{4, QuantumLegos.PauliOps.SinglePauliOp}}}(StaticArraysCore.SVector{4, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("IIXX"), pauliop("IZZI")]))
|
||||
|
||||
julia> collect(g)
|
||||
4-element Vector{StaticArraysCore.SVector{4, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("IIII")
|
||||
pauliop("IIXX")
|
||||
pauliop("IZZI")
|
||||
pauliop("IZYX")
|
||||
```
|
||||
"""
|
||||
struct GeneratedPauliGroup{N}
|
||||
gens::AbstractVector{PauliOp{N}}
|
||||
subsets::IterTools.Subsets
|
||||
function GeneratedPauliGroup(gens::AbstractVector{T}) where {T <: PauliOp}
|
||||
length.(gens) |> unique |> length |> ==(1) ||
|
||||
throw(ArgumentError("All generators must have the same length."))
|
||||
subsets = IterTools.subsets(gens)
|
||||
N = length(gens[1])
|
||||
new{N}(gens, subsets)
|
||||
end
|
||||
end
|
||||
|
||||
function Base.iterate(g::GeneratedPauliGroup)
|
||||
next = iterate(g.subsets)
|
||||
isnothing(next) && return nothing
|
||||
|
||||
subset, state = next
|
||||
init::PauliOp{length(g.gens[1])} = fill(I, length(g.gens[1]))
|
||||
return (init, state)
|
||||
end
|
||||
|
||||
function Base.iterate(g::GeneratedPauliGroup, state)
|
||||
ret = iterate(g.subsets, state)
|
||||
isnothing(ret) && return nothing
|
||||
|
||||
subset, state = ret
|
||||
return (reduce(.*, subset), state)
|
||||
end
|
||||
|
||||
Base.length(g::GeneratedPauliGroup) = length(g.subsets)
|
||||
Base.eltype(::Type{GeneratedPauliGroup{N}}) where {N} = PauliOp{N}
|
||||
|
||||
end # module PauliOps
|
18
src/QuantumLegos.jl
Normal file
18
src/QuantumLegos.jl
Normal file
|
@ -0,0 +1,18 @@
|
|||
module QuantumLegos
|
||||
|
||||
export PauliOps
|
||||
export pauliop, GeneratedPauliGroup, weight
|
||||
|
||||
export Lego, LegoLeg, edge, CheckMatrix, checkmatrix, generators, State, add_lego!, add_edge!, distance
|
||||
|
||||
using StaticArrays
|
||||
using IterTools
|
||||
|
||||
# PauliOps submodule
|
||||
include("PauliOps/PauliOps.jl")
|
||||
using .PauliOps
|
||||
|
||||
include("checkmatrix.jl")
|
||||
include("game.jl")
|
||||
|
||||
end
|
565
src/checkmatrix.jl
Normal file
565
src/checkmatrix.jl
Normal file
|
@ -0,0 +1,565 @@
|
|||
"""
|
||||
CheckMatrix
|
||||
|
||||
# Fields
|
||||
- `cmat`: matrix itself (matrix of `Bool` since we consider only pauli ops.)
|
||||
- `nlegs`: number of columns ÷ 2
|
||||
- `ngens`: number of rows
|
||||
|
||||
# Constructor
|
||||
CheckMatrix(cmat::AbstractMatrix{Bool})
|
||||
See also [`checkmatrix`](@ref).
|
||||
"""
|
||||
mutable struct CheckMatrix
|
||||
# change this to AbstractMatrix{Bool} to accept BitMatrix?
|
||||
cmat::Matrix{Bool}
|
||||
nlegs::Int64
|
||||
ngens::Int64
|
||||
function CheckMatrix(cmat::Matrix{Bool}, nlegs::Integer, ngens::Integer)
|
||||
size(cmat)[1] == ngens ||
|
||||
throw(ArgumentError("`ngens` must equal to number of row of `cmat`"))
|
||||
size(cmat)[2] == nlegs * 2 ||
|
||||
throw(ArgumentError("`nlegs * 2` must equal to number of row of `cmat`"))
|
||||
new(cmat, nlegs, ngens)
|
||||
end
|
||||
end
|
||||
|
||||
function CheckMatrix(cmat::AbstractMatrix{Bool})
|
||||
s = size(cmat)
|
||||
s[2] % 2 == 0 || throw(ArgumentError("invalid `cmat` size"))
|
||||
CheckMatrix(cmat, s[2] ÷ 2, s[1])
|
||||
end
|
||||
|
||||
Base.:(==)(x::T, y::T) where {T <: CheckMatrix} = (==)(x.cmat, y.cmat)
|
||||
Base.copy(x::CheckMatrix) = CheckMatrix(copy(x.cmat))
|
||||
|
||||
function Base.show(io::IO, ::MIME"text/plain", cmat::CheckMatrix)
|
||||
print(io, "CheckMatrix with $(cmat.ngens) generators, $(cmat.nlegs) legs:\n")
|
||||
display_height, display_width = displaysize(io)
|
||||
cur_vpos = 1
|
||||
for row in eachrow(cmat.cmat)
|
||||
cur_hpos = 1
|
||||
for (i, elem) in enumerate(row)
|
||||
sep = i == cmat.nlegs + 1 ? " | " : " "
|
||||
elem_width = length(sep) + 1
|
||||
print(io, sep)
|
||||
if elem
|
||||
printstyled(io, 1, color = :default)
|
||||
cur_hpos += elem_width
|
||||
else
|
||||
printstyled(io, 0, color = :light_black)
|
||||
cur_hpos += elem_width
|
||||
end
|
||||
if cur_hpos > display_width - 5
|
||||
print(io, " …")
|
||||
break
|
||||
end
|
||||
end
|
||||
print(io, "\n")
|
||||
cur_vpos += 1
|
||||
if cur_vpos > display_height - 6
|
||||
cur_hpos = 1
|
||||
for i in 1:(cmat.nlegs * 2)
|
||||
sep = i == cmat.nlegs + 1 ? " | " : " "
|
||||
elem_width = length(sep) + 1
|
||||
print(io, sep)
|
||||
print(io, "⋮")
|
||||
cur_hpos += elem_width
|
||||
if cur_hpos > display_width - 5
|
||||
print(io, " ⋱\n")
|
||||
break
|
||||
end
|
||||
end
|
||||
return nothing
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
checkmatrix(stbgens::AbstractVector{T})::CheckMatrix where {T <: PauliOp}
|
||||
|
||||
Get [`CheckMatrix`](@ref) from stabilizer generator.
|
||||
"""
|
||||
function checkmatrix(stbgens::AbstractVector{T})::CheckMatrix where {T <: PauliOp}
|
||||
# no stbgens
|
||||
if length(stbgens) == 0
|
||||
throw(ArgumentError("No stabilizer is provided. Need at least one."))
|
||||
end
|
||||
# check whether all stbgens have the same length
|
||||
stbgens_length = length.(stbgens)
|
||||
all(==(stbgens_length[1]), stbgens_length[2:end]) || begin
|
||||
@error "lengths of stbgens: " length.(stbgens)
|
||||
throw(ArgumentError("All stabilizer must have the same length"))
|
||||
end
|
||||
|
||||
ngens = length(stbgens)
|
||||
nlegs = length(stbgens[1])
|
||||
cmat = zeros(Bool, (ngens, nlegs * 2))
|
||||
for (i, gen) in enumerate(stbgens)
|
||||
# get X Z component (can be more optimized)
|
||||
xs = gen .== PauliOps.X
|
||||
zs = gen .== PauliOps.Z
|
||||
ys = gen .== PauliOps.Y
|
||||
xs = xs .| ys
|
||||
zs = zs .| ys
|
||||
cmat[i, :] .= vcat(xs, zs)
|
||||
end
|
||||
return CheckMatrix(cmat)
|
||||
end
|
||||
|
||||
"""
|
||||
xpart(cmat::CheckMatrix)
|
||||
|
||||
Get X part (left half) of CheckMatrix.
|
||||
"""
|
||||
function xpart(cmat::CheckMatrix)
|
||||
cmat.cmat[:, 1:(cmat.nlegs)]
|
||||
end
|
||||
|
||||
"""
|
||||
zpart(cmat::CheckMatrix)
|
||||
|
||||
Get Z part (right half) of CheckMatrix.
|
||||
"""
|
||||
function zpart(cmat::CheckMatrix)
|
||||
cmat.cmat[:, (cmat.nlegs + 1):end]
|
||||
end
|
||||
|
||||
function xzparts(cmat::CheckMatrix)
|
||||
return xpart(cmat), zpart(cmat)
|
||||
end
|
||||
|
||||
"""
|
||||
generators(cmat::CheckMatrix)::Vector{PauliOp}
|
||||
|
||||
Get generators from [`CheckMatrix`](@ref).
|
||||
"""
|
||||
function generators(cmat::CheckMatrix)::Vector{PauliOp}
|
||||
gens = PauliOp{cmat.nlegs}[]
|
||||
for row in eachrow(cmat.cmat)
|
||||
gen = map(zip(row[1:(cmat.nlegs)], row[(cmat.nlegs + 1):end])) do (x, z)
|
||||
g = PauliOps.I
|
||||
x && (g = g * PauliOps.X)
|
||||
z && (g = g * PauliOps.Z)
|
||||
g
|
||||
end
|
||||
push!(gens, gen)
|
||||
end
|
||||
gens
|
||||
end
|
||||
|
||||
@doc raw"""
|
||||
direct_sum(cmat_1::T, cmat_2::T)::T where {T <: CheckMatrix}
|
||||
|
||||
Returns block diagonal `CheckMatrix` consists of `cmat_1` and `cmat_2`.
|
||||
|
||||
# CheckMatrix transform
|
||||
When adding a lego $l$ with check matrix $H_l$ to a state with check matrix $H_s$,
|
||||
the resulting check matrix of the state will be
|
||||
```math
|
||||
\begin{pmatrix}
|
||||
H_s & O \\
|
||||
O & H_l \\
|
||||
\end{pmatrix}
|
||||
```
|
||||
"""
|
||||
function direct_sum(cmat_1::T, cmat_2::T)::T where {T <: CheckMatrix}
|
||||
# expand size and fill?
|
||||
old_x, old_z = xzparts(cmat_1)
|
||||
add_x, add_z = xzparts(cmat_2)
|
||||
new_x = cat(old_x, add_x, dims = (1, 2))
|
||||
new_z = cat(old_z, add_z, dims = (1, 2))
|
||||
CheckMatrix(hcat(new_x, new_z))
|
||||
end
|
||||
|
||||
"""
|
||||
eliminate_column!(
|
||||
cmat::CheckMatrix,
|
||||
col::Integer,
|
||||
avoid_row::AbstractVector{T},
|
||||
)::Union{Nothing, Int64} where {T <: Integer}
|
||||
|
||||
Perform Gauss Elimination on `col`.
|
||||
Keep only one `1` on `col` and remove from other rows by performing multiplication.
|
||||
Choose row not in `avoid_row`.
|
||||
If all rows with 1 on `col` are in `avoid_row`, then the last row of them is chose to keep 1.
|
||||
If all rows on `col` is 0, return nothing.
|
||||
|
||||
# Return
|
||||
Row index which have 1 on `col`.
|
||||
If all row on `col` is 0, return nothing.
|
||||
|
||||
# Example
|
||||
```jldoctest
|
||||
julia> ex_cmat = CheckMatrix(Bool[1 0 1 0; 1 1 1 1])
|
||||
CheckMatrix with 2 generators, 2 legs:
|
||||
1 0 | 1 0
|
||||
1 1 | 1 1
|
||||
|
||||
julia> QuantumLegos.eliminate_column!(ex_cmat, 1, Int64[])
|
||||
1
|
||||
|
||||
julia> ex_cmat
|
||||
CheckMatrix with 2 generators, 2 legs:
|
||||
1 0 | 1 0
|
||||
0 1 | 0 1
|
||||
```
|
||||
"""
|
||||
function eliminate_column!(
|
||||
cmat::CheckMatrix,
|
||||
col::Integer,
|
||||
avoid_row::AbstractVector{T},
|
||||
)::Union{Nothing, Int64} where {T <: Integer}
|
||||
all(avoid_row .≤ cmat.ngens) || throw(ArgumentError("avoid_row is out of index"))
|
||||
@assert col ≤ cmat.nlegs * 2
|
||||
|
||||
row_ids = findall(cmat.cmat[:, col]) # row with 1 on `col`
|
||||
@debug "ids of rows with 1 on col $(col) = $(row_ids)"
|
||||
if isempty(row_ids)
|
||||
@debug "No 1 on column $(col)."
|
||||
return nothing
|
||||
end
|
||||
if length(row_ids) == 1
|
||||
# already have only 1 1
|
||||
@debug "Already have only 1 1. Nothing to do."
|
||||
return row_ids[1]
|
||||
else
|
||||
@debug "More than 1 1. Need some operation."
|
||||
row_id_id = findfirst(!∈(avoid_row), row_ids)
|
||||
row_id = if isnothing(row_id_id)
|
||||
@debug "Rows with 1 are duplicated with avoid_row."
|
||||
# select last row_ids
|
||||
pop!(row_ids)
|
||||
else
|
||||
popat!(row_ids, row_id_id)
|
||||
end
|
||||
@debug "Selected row:$(row_id) to keep 1 on col:$(col)."
|
||||
for row in row_ids
|
||||
cmat.cmat[row, :] .⊻= cmat.cmat[row_id, :]
|
||||
end
|
||||
@debug "Finished. now only row:$(row_id) has 1 on col:$(col)"
|
||||
return row_id
|
||||
end
|
||||
error("Unreachable")
|
||||
end
|
||||
|
||||
"""
|
||||
eliminate_column!(cmat::CheckMatrix, col::Integer,
|
||||
avoid_row::AbstractVector{T}) where {T <: Union{Nothing, Integer}}
|
||||
|
||||
`avoid_row` can include `Nothing`, which is ignored in actual evaluation.
|
||||
"""
|
||||
function eliminate_column!(
|
||||
cmat::CheckMatrix,
|
||||
col::Integer,
|
||||
avoid_row::AbstractVector{T},
|
||||
) where {T <: Union{Nothing, Integer}}
|
||||
eliminate_column!(cmat, col, Vector{Integer}(filter(!isnothing, avoid_row)))
|
||||
end
|
||||
|
||||
@inline function swap_row!(m::AbstractMatrix, i::Integer, j::Integer)
|
||||
i == j && return nothing
|
||||
@inbounds m[i, :], m[j, :] = m[j, :], m[i, :]
|
||||
end
|
||||
|
||||
"""
|
||||
align_row!(m::AbstractMatrix, row::Integer, occupied::Vector{Union{Nothing, Integer}}) -> Integer
|
||||
align_row!(m::AbstractMatrix, row::Nothing, occupied::Vector{Union{Nothing, Integer}}) -> Nothing
|
||||
|
||||
Swap row at `row` in `m` and row at next to the maximum in `occupied`.
|
||||
`occupied` is supposed to be a list of returns from [`eliminate_column!`](@ref).
|
||||
If `row` is in `occupied`, do nothing and returns `row`.
|
||||
If `row` is `nothing`, return `nothing`.
|
||||
|
||||
# Arguments
|
||||
- `m::AbstractMatrix`: mutated
|
||||
- `row::Union{Nothing, Integer}`: row to be aligned
|
||||
- `occupied::Vector{Union{Nothing, Integer}}`: indices of already occupied rows. `row` will be next to these rows.
|
||||
|
||||
# Return
|
||||
- Row index where `row` is moved.
|
||||
"""
|
||||
function align_row! end
|
||||
|
||||
function align_row!(
|
||||
m::AbstractMatrix,
|
||||
row::Integer,
|
||||
occupied::AbstractVector{T},
|
||||
) where {T <: Integer}
|
||||
if row ∈ occupied
|
||||
return row
|
||||
end
|
||||
target = if isempty(occupied)
|
||||
1 # begin
|
||||
else
|
||||
maximum(occupied) + 1 # TODO: might cause out of index
|
||||
end
|
||||
swap_row!(m, row, target)
|
||||
target
|
||||
end
|
||||
|
||||
function align_row!(
|
||||
_::AbstractMatrix,
|
||||
row::Nothing,
|
||||
_::AbstractVector{T},
|
||||
) where {T <: Union{Nothing, Integer}}
|
||||
nothing
|
||||
end
|
||||
function align_row!(
|
||||
m::AbstractMatrix,
|
||||
row::Integer,
|
||||
occupied::AbstractVector{T},
|
||||
) where {T <: Union{Nothing, Integer}}
|
||||
filter!(!isnothing, occupied)
|
||||
occupied = Vector{Integer}(occupied)
|
||||
align_row!(m, row, occupied)
|
||||
end
|
||||
|
||||
# TODO: improve perf (see README.md)
|
||||
"""
|
||||
ref!(cmat::CheckMatrix) -> Int
|
||||
|
||||
Convert `cmat` to row echelon form.
|
||||
|
||||
Returns rank of check matrix.
|
||||
|
||||
# Examples
|
||||
```jldoctest
|
||||
julia> cmat = CheckMatrix(Bool[
|
||||
1 0 1 0 1 1 0 1
|
||||
0 1 0 0 0 1 0 0
|
||||
1 1 1 0 1 0 1 1
|
||||
0 1 0 0 0 1 0 0
|
||||
])
|
||||
CheckMatrix with 4 generators, 4 legs:
|
||||
1 0 1 0 | 1 1 0 1
|
||||
0 1 0 0 | 0 1 0 0
|
||||
1 1 1 0 | 1 0 1 1
|
||||
0 1 0 0 | 0 1 0 0
|
||||
|
||||
|
||||
julia> QuantumLegos.ref!(cmat)
|
||||
3
|
||||
|
||||
julia> cmat
|
||||
CheckMatrix with 4 generators, 4 legs:
|
||||
1 0 1 0 | 1 1 0 1
|
||||
0 1 0 0 | 0 1 0 0
|
||||
0 0 0 0 | 0 0 1 0
|
||||
0 0 0 0 | 0 0 0 0
|
||||
|
||||
```
|
||||
"""
|
||||
function ref!(cmat::CheckMatrix)
|
||||
# TODO: remain cmat shape when rank is max
|
||||
# For manual debugging stabilizer generators
|
||||
# Requires LinearAlgebra
|
||||
# if cmat.ngens == rank(cmat.cmat)
|
||||
# return cmat.ngens
|
||||
# end
|
||||
r = 0 # row
|
||||
# for col in eachcol(cmat.cmat)
|
||||
for i in 1:(cmat.nlegs * 2)
|
||||
isall0 = true
|
||||
rid = 0
|
||||
for k in (r + 1):(cmat.ngens)
|
||||
if cmat.cmat[k, i]
|
||||
isall0 = false
|
||||
rid = k
|
||||
break
|
||||
end
|
||||
end
|
||||
if isall0
|
||||
continue
|
||||
end
|
||||
r += 1
|
||||
swap_row!(cmat.cmat, r, rid)
|
||||
for k in (rid + 1):(cmat.ngens)
|
||||
if cmat.cmat[k, i]
|
||||
@. cmat.cmat[k, :] = cmat.cmat[r, :] ⊻ cmat.cmat[k, :]
|
||||
end
|
||||
end
|
||||
#
|
||||
# rids = Int[]
|
||||
# for j in (r + 1):(cmat.ngens)
|
||||
# cmat.cmat[j, i] && push!(rids, j)
|
||||
# end
|
||||
# # rids = findall(col) |> filter(>(r))
|
||||
# if isempty(rids) # all 0
|
||||
# continue
|
||||
# end
|
||||
# r += 1
|
||||
# rid = popfirst!(rids)
|
||||
# swap_row!(cmat.cmat, r, rid)
|
||||
# if isempty(rids) # only 1 1
|
||||
# continue
|
||||
# end
|
||||
# for i in rids
|
||||
# @. cmat.cmat[i, :] = cmat.cmat[r, :] ⊻ cmat.cmat[i, :]
|
||||
# end
|
||||
if r == cmat.ngens
|
||||
break
|
||||
end
|
||||
end
|
||||
r # rank
|
||||
end
|
||||
|
||||
"""
|
||||
eliminate_dependent_row!(cmat::CheckMatrix) -> CheckMatrix
|
||||
|
||||
Remove dependent rows to keep only independent generators.
|
||||
"""
|
||||
function eliminate_dependent_row!(cmat::CheckMatrix)
|
||||
# convert to reduced row echelon form: ref!
|
||||
# remove all-zero rows
|
||||
r = ref!(cmat)
|
||||
num_zero = cmat.ngens - r
|
||||
if num_zero > 0
|
||||
cmat.cmat = cmat.cmat[1:r, :]
|
||||
cmat.ngens = r
|
||||
end
|
||||
return cmat
|
||||
end
|
||||
|
||||
"""
|
||||
self_trace!(cmat::CheckMatrix, col_1::Integer, col_2::Integer)
|
||||
|
||||
Take a self-trace of checkmatrix `cmat` with column `col_1` and `col_2`.
|
||||
|
||||
# Example
|
||||
TODO
|
||||
"""
|
||||
function self_trace!(cmat::CheckMatrix, col_1::Integer, col_2::Integer)#::CheckMatrix
|
||||
if !(col_1 ≤ cmat.nlegs && col_2 ≤ cmat.nlegs)
|
||||
throw(
|
||||
ArgumentError(
|
||||
"Invalid column index(specified index is too large: $(max(col_1, col_2)) > $(cmat.nlegs))",
|
||||
),
|
||||
)
|
||||
end
|
||||
if col_1 == col_2
|
||||
throw(ArgumentError("Can't trace two same legs"))
|
||||
end
|
||||
# sort to col_1 < col_2
|
||||
if col_1 > col_2
|
||||
col_1, col_2 = col_2, col_1
|
||||
end
|
||||
@debug "Initial cmat" cmat
|
||||
|
||||
# TODO: cmat.nlegs ≤ 2 ?
|
||||
|
||||
# organize cmat to where col_1 and col_2 have less than 3 true
|
||||
## do for X on col_1
|
||||
col_1_x_id = eliminate_column!(cmat, col_1, Int64[])
|
||||
col_1_x_id = align_row!(cmat.cmat, col_1_x_id, Int64[])
|
||||
@debug "Finished eliminating of X" cmat
|
||||
## do for Z on col_1
|
||||
col_1_z_id = eliminate_column!(cmat, col_1 + cmat.nlegs, [col_1_x_id])
|
||||
col_1_z_id = align_row!(cmat.cmat, col_1_z_id, [col_1_x_id])
|
||||
@debug "Finished elimination of Z" cmat
|
||||
@debug "col_1 X:" findall(cmat.cmat[:, col_1])
|
||||
@debug "col_1 Z:" findall(cmat.cmat[:, col_1 + cmat.nlegs])
|
||||
## repeat for col_2
|
||||
## for X on col_2
|
||||
col_2_x_id = eliminate_column!(cmat, col_2, [col_1_x_id, col_1_z_id])
|
||||
col_2_x_id = align_row!(cmat.cmat, col_2_x_id, [col_1_x_id, col_1_z_id])
|
||||
@debug "Finished eliminating of X" cmat
|
||||
## do for Z on col_1
|
||||
col_2_z_id =
|
||||
eliminate_column!(cmat, col_2 + cmat.nlegs, [col_1_x_id, col_1_z_id, col_2_x_id])
|
||||
col_2_z_id = align_row!(cmat.cmat, col_2_z_id, [col_1_x_id, col_1_z_id, col_2_x_id])
|
||||
@debug "Finished elimination of Z" cmat
|
||||
@debug "col_2 X:" findall(cmat.cmat[:, col_2])
|
||||
@debug "col_2 Z:" findall(cmat.cmat[:, col_2 + cmat.nlegs])
|
||||
|
||||
@debug "Finished Gauss Elimination" cmat
|
||||
# @info "col x/z s $([col_1_x_id, col_1_z_id, col_2_x_id, col_2_z_id])"
|
||||
|
||||
# then adding them
|
||||
# select rows which have same value on col_1 and col_2
|
||||
# trace (remove col_1, col_2) and remove duplicate row(or dependent row: i.e. row-elim.)
|
||||
@debug "Tracing"
|
||||
# assert that col_1, col_2 have 1s only on row 1, 2, 3, 4
|
||||
@assert findall(cmat.cmat[:, col_1]) .|> ≤(1) |> all
|
||||
@assert findall(cmat.cmat[:, col_1 + cmat.nlegs]) .|> ≤(2) |> all
|
||||
@assert findall(cmat.cmat[:, col_2]) .|> ≤(3) |> all
|
||||
@assert findall(cmat.cmat[:, col_2 + cmat.nlegs]) .|> ≤(4) |> all
|
||||
col_12_xz_ids = [col_1_z_id, col_1_x_id, col_2_x_id, col_2_z_id] |> filter(!isnothing)
|
||||
|
||||
# note that col_1 < col_2
|
||||
remaining_x_cols =
|
||||
[1:(col_1 - 1)..., (col_1 + 1):(col_2 - 1)..., (col_2 + 1):(cmat.nlegs)...]
|
||||
remaining_cols = [remaining_x_cols..., (remaining_x_cols .+ cmat.nlegs)...]
|
||||
if cmat.ngens ≤ 3
|
||||
# TODO:
|
||||
# @warn "cmat has ≤ 3 generators" cmat
|
||||
subsets_row = eachrow(cmat.cmat) |> subsets |> collect
|
||||
filter!(!isempty, subsets_row)
|
||||
generated_rows = map(subsets_row) do vs
|
||||
reduce(.⊻, vs)
|
||||
end
|
||||
# matching on col
|
||||
filter!(generated_rows) do v
|
||||
v[[col_1, col_2]] == v[[col_1 + cmat.nlegs, col_2 + cmat.nlegs]]
|
||||
end
|
||||
new_ngens = length(generated_rows)
|
||||
new_cmat = zeros(Bool, (new_ngens, 2 * (cmat.nlegs - 2)))
|
||||
for (i, v) in enumerate(generated_rows)
|
||||
new_cmat[i, :] .= v[remaining_cols]
|
||||
end
|
||||
|
||||
cmat.cmat = new_cmat
|
||||
cmat.nlegs -= 2
|
||||
@assert size(cmat.cmat)[2] == 2 * cmat.nlegs "cmat size mismatched"
|
||||
cmat.ngens = size(cmat.cmat)[1]
|
||||
@assert cmat.ngens == new_ngens
|
||||
elseif cmat.cmat[1, col_1] &&
|
||||
cmat.cmat[2, col_1 + cmat.nlegs] &&
|
||||
cmat.cmat[3, col_2] &&
|
||||
cmat.cmat[4, col_2 + cmat.nlegs]
|
||||
@assert Set([col_1_x_id, col_1_z_id, col_2_x_id, col_2_z_id]) == Set([1, 2, 3, 4])
|
||||
# All errors correctable (D.9) (row 2, 3 swapped)
|
||||
cmat.cmat[1, :] .⊻= cmat.cmat[3, :]
|
||||
cmat.cmat[2, :] .⊻= cmat.cmat[4, :]
|
||||
@assert cmat.cmat[1, col_1] && cmat.cmat[3, col_2] "Test whether the form is D.10"
|
||||
@assert cmat.cmat[2, col_1 + cmat.nlegs] && cmat.cmat[4, col_2 + cmat.nlegs] "Test whether the form is D.10"
|
||||
new_cmat = zeros(Bool, (cmat.ngens - 2, 2 * (cmat.nlegs - 2)))
|
||||
new_cmat[1, :] .= cmat.cmat[1, remaining_cols]
|
||||
new_cmat[2, :] .= cmat.cmat[2, remaining_cols]
|
||||
new_cmat[3:end, :] .= cmat.cmat[5:end, remaining_cols]
|
||||
|
||||
cmat.cmat = new_cmat
|
||||
cmat.nlegs -= 2
|
||||
cmat.ngens -= 2
|
||||
else#if maximum(col_12_xz_ids) == 3 # TODO: can be split
|
||||
# TODO need some cases
|
||||
# @warn "Implementing..."
|
||||
# @info cmat cmat
|
||||
|
||||
row_123 = eachrow(cmat.cmat)[1:3]
|
||||
subsets_from_123 = collect(subsets(row_123))
|
||||
filter!(!isempty, subsets_from_123)
|
||||
generated_from_123 = map(subsets_from_123) do vs
|
||||
reduce(.⊻, vs)
|
||||
end
|
||||
filter!(generated_from_123) do v
|
||||
# matched
|
||||
v[[col_1, col_2]] == v[[col_1 + cmat.nlegs, col_2 + cmat.nlegs]]
|
||||
end
|
||||
n_generated_from_123 = length(generated_from_123)
|
||||
new_ngens = n_generated_from_123 + cmat.ngens - 3
|
||||
new_cmat = zeros(Bool, (new_ngens, 2 * (cmat.nlegs - 2)))
|
||||
for (i, v) in enumerate(generated_from_123)
|
||||
new_cmat[i, :] .= v[remaining_cols]
|
||||
end
|
||||
new_cmat[(n_generated_from_123 + 1):end, :] .= cmat.cmat[4:end, remaining_cols]
|
||||
|
||||
cmat.cmat = new_cmat
|
||||
cmat.nlegs -= 2
|
||||
@assert cmat.nlegs == size(new_cmat)[2] ÷ 2
|
||||
cmat.ngens = size(new_cmat)[1]
|
||||
end
|
||||
# ngens is updated below
|
||||
eliminate_dependent_row!(cmat)
|
||||
return cmat
|
||||
end
|
281
src/game.jl
Normal file
281
src/game.jl
Normal file
|
@ -0,0 +1,281 @@
|
|||
macro todo()
|
||||
error("TODO: Unimplemented")
|
||||
end
|
||||
macro todo(msg)
|
||||
error("TODO: Unimplemented: $msg")
|
||||
end
|
||||
|
||||
"""
|
||||
Quantum lego with `N` legs.
|
||||
|
||||
# Fields
|
||||
- `nlegs::Int64`: number of legs, equals `N`
|
||||
- `stabgens::SVector{N, PauliOp{N}}`: stabilizer generators. vector of [`PauliOp`](@ref)
|
||||
|
||||
# Constructor
|
||||
Lego([nlegs::Integer], stabgens::AbstractVector{PauliOp{N}})
|
||||
|
||||
Constructor for [`Lego`](@ref).
|
||||
`nlegs` is optional (default is length of the first stabilizer generator).
|
||||
|
||||
# Example
|
||||
```jldoctest
|
||||
julia> stabgens = pauliop.(["II", "XX"])
|
||||
2-element Vector{StaticArraysCore.SVector{2, QuantumLegos.PauliOps.SinglePauliOp}}:
|
||||
pauliop("II")
|
||||
pauliop("XX")
|
||||
|
||||
julia> Lego(stabgens)
|
||||
Lego{2}(2, StaticArraysCore.SVector{2, QuantumLegos.PauliOps.SinglePauliOp}[pauliop("II"), pauliop("XX")])
|
||||
```
|
||||
"""
|
||||
struct Lego{N}
|
||||
nlegs::Int64
|
||||
stabgens::SVector{N, PauliOp{N}} # There two Ns must be the same?
|
||||
function Lego(nlegs::Integer, stabgens::AbstractVector{PauliOp{N}}) where {N}
|
||||
all(length(stabgens[1]) .== length.(stabgens)) ||
|
||||
throw(ArgumentError("All stabgens have the same length"))
|
||||
nlegs == length(stabgens[1]) ||
|
||||
throw(ArgumentError("`nlegs` must equal to length of stabilizer"))
|
||||
new{N}(nlegs, stabgens)
|
||||
end
|
||||
end
|
||||
|
||||
Lego(stabgens::AbstractVector{PauliOp{N}}) where {N} = Lego(length(stabgens[1]), stabgens)
|
||||
|
||||
function nlegs(lego::Lego)::Integer
|
||||
lego.nlegs
|
||||
end
|
||||
|
||||
"""
|
||||
mutable struct State
|
||||
|
||||
To be used in [`State`](@ref).
|
||||
|
||||
# Fields
|
||||
- `lego_id::Int64`: index in `legos` in `State`
|
||||
- `edge_id::Int64`: index in `Lego` in `legos` in `State`. No validation check included in `LegoLeg`.
|
||||
|
||||
# Example
|
||||
```jldoctest
|
||||
julia> x = LegoLeg.([(2, 1), (1, 1), (1, 0)])
|
||||
3-element Vector{LegoLeg}:
|
||||
LegoLeg(2, 1)
|
||||
LegoLeg(1, 1)
|
||||
LegoLeg(1, 0)
|
||||
|
||||
julia> sort(x)
|
||||
3-element Vector{LegoLeg}:
|
||||
LegoLeg(1, 0)
|
||||
LegoLeg(1, 1)
|
||||
LegoLeg(2, 1)
|
||||
```
|
||||
"""
|
||||
struct LegoLeg
|
||||
lego_id::Int64
|
||||
leg_id::Int64
|
||||
end
|
||||
|
||||
LegoLeg(t::Tuple{Integer, Integer}) = LegoLeg(t...)
|
||||
|
||||
"""
|
||||
Helper function to create `Tuple{LegoLeg, LegoLeg}` to represent edge.
|
||||
"""
|
||||
function edge end
|
||||
|
||||
"""
|
||||
edge(t::Tuple{T, T}) where {T <: Tuple{Integer, Integer}}
|
||||
"""
|
||||
function edge(t::Tuple{T, T}) where {T <: Tuple{Integer, Integer}}
|
||||
(LegoLeg(t[1]), LegoLeg(t[2]))
|
||||
end
|
||||
|
||||
"""
|
||||
edge(t::Tuple{T, T, T, T}) where {T <: Integer}
|
||||
"""
|
||||
function edge(t::Tuple{T, T, T, T}) where {T <: Integer}
|
||||
edge(((t[1], t[2]), (t[3], t[4])))
|
||||
end
|
||||
|
||||
"""
|
||||
edge(x::T, y::T, z::T, w::T) where {T <: Integer}
|
||||
"""
|
||||
function edge(x::T, y::T, z::T, w::T) where {T <: Integer}
|
||||
edge(((x, y), (z, w)))
|
||||
end
|
||||
|
||||
function Base.isless(x::T, y::T) where {T <: LegoLeg}
|
||||
if x.lego_id != y.lego_id
|
||||
return x.lego_id < y.lego_id
|
||||
else
|
||||
return x.leg_id < y.leg_id
|
||||
end
|
||||
end
|
||||
|
||||
"""
|
||||
mutable struct State
|
||||
|
||||
State (in p.4)
|
||||
|
||||
# Fields
|
||||
- `legos`: `Vector{Lego}`
|
||||
- `edges`: Vector of ((`lego_i, leg_n`), (`lego_j, leg_m`)).
|
||||
Each element is sorted (i.e. `lego_i < lego_j` or `lego_i == lego_j && leg_n < leg_m`).
|
||||
This feature is used in [`is_connected_to_firstlego`](@ref).
|
||||
- `cmat::CheckMatrix`: CheckMatrix
|
||||
|
||||
# Constructor
|
||||
State(legos::Vector{Lego{N}}, edges::Vector{Tuple{LegoLeg, LegoLeg}})
|
||||
|
||||
# Methods with
|
||||
- [`add_lego!`](@ref)
|
||||
- [`add_edge!`](@ref)
|
||||
|
||||
# Example
|
||||
TODO
|
||||
"""
|
||||
mutable struct State
|
||||
legos::Vector{Lego}
|
||||
edges::Vector{Tuple{LegoLeg, LegoLeg}}
|
||||
cmat::CheckMatrix
|
||||
function State(legos::Vector{Lego{N}}, edges::Vector{Tuple{LegoLeg, LegoLeg}}) where {N}
|
||||
if length(edges) == 0
|
||||
if length(legos) == 0
|
||||
throw(ArgumentError("Need at least one lego"))
|
||||
elseif length(legos) == 1
|
||||
cmat = checkmatrix(legos[1].stabgens)
|
||||
return new(legos, edges, cmat)
|
||||
else
|
||||
# just iterate instead of recursion?
|
||||
return add_lego!(State(legos[1:(end - 1)], edges), legos[end])
|
||||
end
|
||||
else
|
||||
new_edge = pop!(edges)
|
||||
if new_edge[1] == new_edge[2]
|
||||
throw(ArgumentError("Can't make edges between the same leg."))
|
||||
end
|
||||
# sort
|
||||
if new_edge[1] > new_edge[2]
|
||||
new_edge = (new_edge[2], new_edge[1])
|
||||
end
|
||||
state = State(legos, edges)
|
||||
return add_edge!(state, new_edge)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function Base.:(==)(x::T, y::T) where {T <: State}
|
||||
x.legos == y.legos && x.edges == y.edges && x.cmat == y.cmat
|
||||
end
|
||||
|
||||
"""
|
||||
add_lego!(state::State, lego::Lego) -> State
|
||||
|
||||
Add a new lego, updating `state`.
|
||||
"""
|
||||
function add_lego!(state::State, lego::Lego)::State
|
||||
push!(state.legos, lego)
|
||||
# direct sum
|
||||
state.cmat = direct_sum(state.cmat, checkmatrix(lego.stabgens))
|
||||
return state
|
||||
end
|
||||
|
||||
"""
|
||||
cmat_index(state::State, leg::LegoLeg)::Int64
|
||||
|
||||
Get column index corresponds to `leg` in check matrix of `state`.
|
||||
If given `leg` is already connected, it throws `ArgumentError`.
|
||||
If given `lego_id` of `leg` is out of `state.legos`, throws `ArgumentError`.
|
||||
"""
|
||||
function cmat_index(state::State, leg::LegoLeg)::Int64
|
||||
connected_legs = if isempty(state.edges)
|
||||
LegoLeg[]
|
||||
else
|
||||
mapreduce(x -> [x...], vcat, state.edges)
|
||||
end
|
||||
if leg in connected_legs
|
||||
throw(ArgumentError("The specified leg:$(leg) is already connected."))
|
||||
end
|
||||
if leg.lego_id > length(state.legos)
|
||||
throw(ArgumentError("state doesn't have lego:$(leg.lego_id)"))
|
||||
end
|
||||
sort!(connected_legs)
|
||||
filter!(<(leg), connected_legs)
|
||||
n_connected_edges = length(connected_legs)
|
||||
n_lego_legs = state.legos[1:(leg.lego_id - 1)] .|> nlegs |> sum
|
||||
return n_lego_legs + leg.leg_id - n_connected_edges
|
||||
end
|
||||
|
||||
"""
|
||||
add_edge!(state::State, leg_1::LegoLeg, leg_2::LegoLeg)::State
|
||||
|
||||
Add a new edge between `leg_1` and `leg_2`, updating `state`.
|
||||
"""
|
||||
function add_edge!(state::State, leg_1::LegoLeg, leg_2::LegoLeg)::State
|
||||
# sort
|
||||
if leg_1 > leg_2
|
||||
leg_1, leg_2 = leg_2, leg_1
|
||||
end
|
||||
col_1 = cmat_index(state, leg_1)
|
||||
col_2 = cmat_index(state, leg_2)
|
||||
self_trace!(state.cmat, col_1, col_2) # mutates cmat
|
||||
push!(state.edges, (leg_1, leg_2))
|
||||
return state
|
||||
end
|
||||
|
||||
add_edge!(state::State, edge::Tuple{LegoLeg, LegoLeg}) = add_edge!(state, edge...)
|
||||
|
||||
"""
|
||||
is_connected_to_firstlego(state::State)::BitVector
|
||||
|
||||
Returns vector which stores whether each lego is connected to the first lego.
|
||||
"""
|
||||
function is_connected_to_firstlego(state::State)::BitVector
|
||||
connected_to_first = falses(state.legos |> length)
|
||||
connected_to_first[1] = true
|
||||
sort!(state.edges)
|
||||
for edge in state.edges
|
||||
is_edge_1_connected = connected_to_first[edge[1].lego_id]
|
||||
is_edge_2_connected = connected_to_first[edge[2].lego_id]
|
||||
if is_edge_1_connected && is_edge_2_connected
|
||||
continue
|
||||
elseif is_edge_1_connected
|
||||
connected_to_first[edge[2].lego_id] = true
|
||||
elseif is_edge_2_connected
|
||||
connected_to_first[edge[1].lego_id] = true
|
||||
else
|
||||
continue
|
||||
end
|
||||
end
|
||||
return connected_to_first
|
||||
end
|
||||
|
||||
"""
|
||||
distance(state::State) -> Int
|
||||
|
||||
Calculate code distance when the first leg of `state` is assigned as logical.
|
||||
"""
|
||||
distance(state::State) = _naive_distance(state)
|
||||
|
||||
# TODO
|
||||
"""
|
||||
Calculate distance.
|
||||
Use minimum distance of all generated normalizers.
|
||||
"""
|
||||
function _naive_distance(state::State)
|
||||
# not optimized(can use less alloc)?
|
||||
_naive_distance(state.cmat)
|
||||
end
|
||||
|
||||
function _naive_distance(cmat::CheckMatrix)
|
||||
# not optimized(can use less alloc)?
|
||||
if cmat.ngens != cmat.nlegs
|
||||
return 0
|
||||
end
|
||||
normalizers = cmat |> generators |> GeneratedPauliGroup |> collect
|
||||
filter!(x -> x[1] != PauliOps.I, normalizers)
|
||||
isempty(normalizers) && @warn "No stabilizer in the code" state
|
||||
distance::Integer = minimum(weight, normalizers) - 1 # substitute 1 because first op is always ≠I
|
||||
@assert distance >= 0
|
||||
return distance
|
||||
end
|
26
test/pauliops.jl
Normal file
26
test/pauliops.jl
Normal file
|
@ -0,0 +1,26 @@
|
|||
@testset "SinglePauliOp" begin
|
||||
@test PauliOps.single_pauliop('I') == PauliOps.I
|
||||
@test_throws ArgumentError PauliOps.single_pauliop('a')
|
||||
end
|
||||
|
||||
@testset "SinglePauliOp Product" begin
|
||||
using QuantumLegos.PauliOps: I, X, Y, Z
|
||||
@test I * X == X
|
||||
@test Z * I == Z
|
||||
@test X * Y == Z
|
||||
@test Z * X == Y
|
||||
@test X * X == I
|
||||
end
|
||||
|
||||
@testset "PauliOp" begin
|
||||
@test pauliop("IXYZ") == [PauliOps.I, PauliOps.X, PauliOps.Y, PauliOps.Z]
|
||||
@test pauliop("IIXXZZ") ==
|
||||
[PauliOps.I, PauliOps.I, PauliOps.X, PauliOps.X, PauliOps.Z, PauliOps.Z]
|
||||
end
|
||||
|
||||
@testset "weight" begin
|
||||
p = pauliop("IXYZIXYZ")
|
||||
@test weight(p) == 6
|
||||
@test QuantumLegos.xweight(p) == 4
|
||||
@test QuantumLegos.zweight(p) == 4
|
||||
end
|
405
test/runtests.jl
Normal file
405
test/runtests.jl
Normal file
|
@ -0,0 +1,405 @@
|
|||
# for language server completion
|
||||
# must be removed for test
|
||||
true || include("../src/QuantumLegos.jl")
|
||||
|
||||
using QuantumLegos
|
||||
using Test
|
||||
using Documenter
|
||||
using Aqua
|
||||
using JET
|
||||
|
||||
@testset "QuantumLegos.jl" begin
|
||||
@testset "PauliOps" begin
|
||||
include("pauliops.jl")
|
||||
end
|
||||
|
||||
@testset "Lego" begin
|
||||
stabilizers = pauliop.(["II", "XX"])
|
||||
wrong_stabilizers = pauliop.(["I", "XX"]) # not SVector
|
||||
@info stabilizers
|
||||
@test_throws ArgumentError QuantumLegos.Lego(3, stabilizers)
|
||||
@test_throws MethodError QuantumLegos.Lego(2, wrong_stabilizers)
|
||||
end
|
||||
|
||||
@testset "CheckMatrix" begin
|
||||
@test_throws ArgumentError QuantumLegos.CheckMatrix([true false; false true], 2, 2)
|
||||
@test_throws ArgumentError QuantumLegos.CheckMatrix([true false; false true], 1, 1)
|
||||
@test QuantumLegos.CheckMatrix([true false; false true]) ==
|
||||
QuantumLegos.CheckMatrix(Bool[1 0; 0 1], 1, 2)
|
||||
@test_throws ArgumentError QuantumLegos.CheckMatrix([true false true; false true true])
|
||||
|
||||
@test_throws MethodError QuantumLegos.checkmatrix(pauliop.(["I", "IX"]))
|
||||
@test_throws ArgumentError QuantumLegos.checkmatrix(PauliOps.PauliOp[])
|
||||
@test QuantumLegos.checkmatrix(pauliop.(["IIXX", "IZZI"])) ==
|
||||
QuantumLegos.CheckMatrix(Bool[0 0 1 1 0 0 0 0; 0 0 0 0 0 1 1 0])
|
||||
@test QuantumLegos.checkmatrix(pauliop.(["YIXX", "IZYI"])) ==
|
||||
QuantumLegos.CheckMatrix(Bool[1 0 1 1 1 0 0 0; 0 0 1 0 0 1 1 0])
|
||||
|
||||
let
|
||||
gens = pauliop.(["IIXX", "IZZI"])
|
||||
cmat_1 = QuantumLegos.checkmatrix(gens)
|
||||
@test QuantumLegos.xpart(cmat_1) == Bool[0 0 1 1; 0 0 0 0]
|
||||
@test QuantumLegos.zpart(cmat_1) == Bool[0 0 0 0; 0 1 1 0]
|
||||
@test generators(cmat_1) == gens
|
||||
end
|
||||
let
|
||||
gens = pauliop.(["YIXX", "IZYI"])
|
||||
cmat_2 = QuantumLegos.checkmatrix(gens)
|
||||
@test QuantumLegos.xpart(cmat_2) == Bool[1 0 1 1; 0 0 1 0]
|
||||
@test QuantumLegos.zpart(cmat_2) == Bool[1 0 0 0; 0 1 1 0]
|
||||
@test generators(cmat_2) == gens
|
||||
end
|
||||
|
||||
@testset "eliminate_column!" begin
|
||||
let
|
||||
cmat = QuantumLegos.CheckMatrix(Bool[
|
||||
1 0 0 1
|
||||
1 0 1 1
|
||||
])
|
||||
@test QuantumLegos.eliminate_column!(cmat, 1, Int64[]) == 1
|
||||
@test cmat.cmat == Bool[
|
||||
1 0 0 1
|
||||
0 0 1 0
|
||||
]
|
||||
end
|
||||
let
|
||||
cmat = QuantumLegos.CheckMatrix(Bool[
|
||||
1 0 0 1
|
||||
1 0 1 1
|
||||
])
|
||||
@test QuantumLegos.eliminate_column!(cmat, 1, Int64[1]) == 2
|
||||
@test cmat.cmat == Bool[
|
||||
0 0 1 0
|
||||
1 0 1 1
|
||||
]
|
||||
end
|
||||
let
|
||||
cmat = QuantumLegos.CheckMatrix(
|
||||
Bool[
|
||||
1 1 0 1 0 0 1 1
|
||||
0 0 1 1 0 1 0 1
|
||||
0 1 1 0 1 0 1 1
|
||||
0 1 0 1 0 1 0 1
|
||||
],
|
||||
)
|
||||
@test QuantumLegos.eliminate_column!(cmat, 2, [1]) == 3
|
||||
@test cmat.cmat == Bool[
|
||||
1 0 1 1 1 0 0 0
|
||||
0 0 1 1 0 1 0 1
|
||||
0 1 1 0 1 0 1 1
|
||||
0 0 1 1 1 1 1 0
|
||||
]
|
||||
end
|
||||
let
|
||||
cmat = QuantumLegos.CheckMatrix(
|
||||
Bool[
|
||||
1 1 0 1 0 0 1 1
|
||||
0 0 1 1 0 1 0 1
|
||||
0 1 1 0 1 0 1 1
|
||||
0 1 0 1 0 1 0 1
|
||||
],
|
||||
)
|
||||
@test QuantumLegos.eliminate_column!(cmat, 2, [1, nothing]) == 3
|
||||
@test cmat.cmat == Bool[
|
||||
1 0 1 1 1 0 0 0
|
||||
0 0 1 1 0 1 0 1
|
||||
0 1 1 0 1 0 1 1
|
||||
0 0 1 1 1 1 1 0
|
||||
]
|
||||
end
|
||||
let
|
||||
cmat = QuantumLegos.CheckMatrix(
|
||||
Bool[
|
||||
1 0 0 0 1 1 0 1
|
||||
0 1 0 1 0 1 1 0
|
||||
0 1 0 0 0 1 0 0
|
||||
1 1 0 1 0 0 0 1
|
||||
],
|
||||
)
|
||||
@test QuantumLegos.eliminate_column!(cmat, 3, Int[]) === nothing
|
||||
end
|
||||
let
|
||||
# random test (robustness)
|
||||
function random_test()::Bool
|
||||
test_mat = rand(Bool, (8, 16))
|
||||
cmat = QuantumLegos.CheckMatrix(copy(test_mat))
|
||||
keep_indices = (1:8)[rand(1:8, rand(0:8))]
|
||||
keep_index = rand(1:16)
|
||||
try
|
||||
QuantumLegos.eliminate_column!(cmat, keep_index, keep_indices)
|
||||
return true
|
||||
catch e
|
||||
# unexpected error
|
||||
@error "Error on eliminate_column! with keep_index: $(keep_index), avoid: $(keep_indices), matrix:" cmat
|
||||
@error "error: " e
|
||||
return false
|
||||
end
|
||||
end
|
||||
|
||||
for i in 1:100
|
||||
# @info i
|
||||
@test random_test()
|
||||
end
|
||||
end
|
||||
@testset "ArgumentError" begin
|
||||
cmat = CheckMatrix(rand(Bool, (6, 12)))
|
||||
@test_throws ArgumentError QuantumLegos.eliminate_column!(cmat, 3, [1, 7])
|
||||
end
|
||||
end
|
||||
@testset "swap_row!" begin
|
||||
let
|
||||
m = rand(Bool, (10, 10))
|
||||
m_copy = copy(m)
|
||||
QuantumLegos.swap_row!(m, 3, 7)
|
||||
QuantumLegos.swap_row!(m, 3, 7)
|
||||
@test m == m_copy
|
||||
end
|
||||
let
|
||||
m = rand(Bool, (10, 10))
|
||||
m = BitMatrix(m)
|
||||
m_copy = copy(m)
|
||||
QuantumLegos.swap_row!(m, 4, 2)
|
||||
QuantumLegos.swap_row!(m, 4, 2)
|
||||
@test m == m_copy
|
||||
end
|
||||
end
|
||||
@testset "align_row!" begin
|
||||
mat = Bool[
|
||||
1 0 1 1 0 0 1 0
|
||||
0 1 0 1 0 1 0 0
|
||||
1 1 1 0 0 1 0 0
|
||||
1 0 0 1 0 1 0 0
|
||||
]
|
||||
mat_1 = copy(mat)
|
||||
@test 1 == QuantumLegos.align_row!(mat_1, 3, Int64[])
|
||||
@test mat_1 == Bool[
|
||||
1 1 1 0 0 1 0 0
|
||||
0 1 0 1 0 1 0 0
|
||||
1 0 1 1 0 0 1 0
|
||||
1 0 0 1 0 1 0 0
|
||||
]
|
||||
mat_1 = copy(mat)
|
||||
@test 1 == QuantumLegos.align_row!(mat_1, 3, [nothing])
|
||||
@test mat_1 == Bool[
|
||||
1 1 1 0 0 1 0 0
|
||||
0 1 0 1 0 1 0 0
|
||||
1 0 1 1 0 0 1 0
|
||||
1 0 0 1 0 1 0 0
|
||||
]
|
||||
mat_2 = copy(mat)
|
||||
@test 2 == QuantumLegos.align_row!(mat_2, 3, [1])
|
||||
@test mat_2 == Bool[
|
||||
1 0 1 1 0 0 1 0
|
||||
1 1 1 0 0 1 0 0
|
||||
0 1 0 1 0 1 0 0
|
||||
1 0 0 1 0 1 0 0
|
||||
]
|
||||
mat_3 = copy(mat)
|
||||
@test 3 == QuantumLegos.align_row!(mat_3, 3, [1, nothing, 3])
|
||||
@test mat_3 == Bool[
|
||||
1 0 1 1 0 0 1 0
|
||||
0 1 0 1 0 1 0 0
|
||||
1 1 1 0 0 1 0 0 # 3
|
||||
1 0 0 1 0 1 0 0 # 4
|
||||
]
|
||||
mat_3_2 = copy(mat_3)
|
||||
@test 4 == QuantumLegos.align_row!(mat_3, 4, [1, nothing, 3])
|
||||
@test mat_3 == mat_3_2
|
||||
@test nothing === QuantumLegos.align_row!(mat_3, nothing, [1, 2])
|
||||
@test nothing === QuantumLegos.align_row!(mat_3, nothing, [1, 2, nothing])
|
||||
@test nothing === QuantumLegos.align_row!(mat_3, nothing, [nothing])
|
||||
end
|
||||
@testset "ref!" begin
|
||||
@testset "compare with AbstractAlgebra" begin
|
||||
# test using existing package
|
||||
using AbstractAlgebra
|
||||
F₂ = GF(2) # finite field
|
||||
|
||||
"""
|
||||
Compare self-implemented `ref!` with AbstractAlgebra's `rref!` or `rank`.
|
||||
"""
|
||||
function random_test(size::Tuple{T, T}) where {T <: Integer}
|
||||
mat = rand(Bool, size)
|
||||
cmat = CheckMatrix(mat)
|
||||
S = matrix_space(F₂, size...)
|
||||
cmat_aa = S(F₂.(mat))
|
||||
# r_aa, A_aa = AbstractAlgebra.rref(cmat_aa)
|
||||
# cmat_aa = A_aa.entries .|> ==(1) |> Matrix{Bool} |> CheckMatrix
|
||||
r_aa = rank(cmat_aa)
|
||||
r = QuantumLegos.ref!(cmat)
|
||||
# @info "compare cmat" cmat cmat_aa
|
||||
@test r == r_aa
|
||||
end
|
||||
for _ in 1:10
|
||||
random_test((2, 4))
|
||||
random_test((4, 8))
|
||||
random_test((100, 200))
|
||||
end
|
||||
end
|
||||
@testset "manual sample" begin
|
||||
import LinearAlgebra
|
||||
mat =
|
||||
Bool[1 0 0 1 1 0 0 0; 0 1 0 0 1 1 0 1; 0 0 1 1 0 1 0 1; 0 1 0 0 1 0 0 1]
|
||||
cmat = CheckMatrix(mat)
|
||||
@test QuantumLegos.ref!(cmat) == LinearAlgebra.rank(mat)
|
||||
@test cmat == CheckMatrix(
|
||||
Bool[
|
||||
1 0 0 1 1 0 0 0
|
||||
0 1 0 0 1 1 0 1
|
||||
0 0 1 1 0 1 0 1
|
||||
0 0 0 0 0 1 0 0
|
||||
],
|
||||
4,
|
||||
4,
|
||||
)
|
||||
let
|
||||
mat = copy(mat)
|
||||
dependent_row = reduce(.⊻, eachrow(mat)[[1, 2]])
|
||||
mat[4, :] = dependent_row
|
||||
cmat = CheckMatrix(mat)
|
||||
@test QuantumLegos.ref!(cmat) == LinearAlgebra.rank(mat) == 3
|
||||
end
|
||||
let
|
||||
mat = copy(mat)
|
||||
dependent_row = reduce(.⊻, eachrow(mat)[[1, 2]])
|
||||
mat = vcat(mat, dependent_row')
|
||||
dependent_row = reduce(.⊻, eachrow(mat)[[1, 2, 3]])
|
||||
mat = vcat(mat, dependent_row')
|
||||
dependent_row = reduce(.⊻, eachrow(mat)[[2, 4]])
|
||||
mat = vcat(mat, dependent_row')
|
||||
cmat = CheckMatrix(mat)
|
||||
@test QuantumLegos.ref!(cmat) == rank(mat) == 3
|
||||
end
|
||||
end
|
||||
@testset "generated group is invariant under ref!" begin
|
||||
for _ in 1:10
|
||||
cmat = CheckMatrix(rand(Bool, (8, 12)))
|
||||
before = cmat |> generators |> GeneratedPauliGroup |> Set
|
||||
QuantumLegos.ref!(cmat)
|
||||
@test cmat |> generators |> GeneratedPauliGroup |> Set |> ==(before)
|
||||
end
|
||||
end
|
||||
end
|
||||
@testset "eliminate_dependent_row!" begin
|
||||
@testset "trivial" begin
|
||||
cmat = CheckMatrix(
|
||||
Bool[
|
||||
1 0 0 1 0 1 0 1
|
||||
0 1 1 0 0 1 1 0
|
||||
0 0 0 1 1 0 1 0
|
||||
0 0 0 0 0 0 0 0
|
||||
],
|
||||
)
|
||||
@test QuantumLegos.eliminate_dependent_row!(cmat) == CheckMatrix(
|
||||
Bool[1 0 0 1 0 1 0 1; 0 1 1 0 0 1 1 0; 0 0 0 1 1 0 1 0],
|
||||
4,
|
||||
3,
|
||||
)
|
||||
end
|
||||
@testset "less trivial" begin
|
||||
cmat = CheckMatrix(
|
||||
Bool[
|
||||
1 0 0 1 0 1 0 1
|
||||
0 1 1 0 0 1 1 0
|
||||
0 0 0 1 1 0 1 0
|
||||
1 1 1 1 0 0 1 1
|
||||
],
|
||||
)
|
||||
@test QuantumLegos.eliminate_dependent_row!(cmat) == CheckMatrix(
|
||||
Bool[1 0 0 1 0 1 0 1; 0 1 1 0 0 1 1 0; 0 0 0 1 1 0 1 0],
|
||||
4,
|
||||
3,
|
||||
)
|
||||
end
|
||||
# TODO: add more?
|
||||
end
|
||||
@testset "self_trace!" begin
|
||||
cmat = CheckMatrix(rand(Bool, (8, 16)))
|
||||
@test_throws ArgumentError QuantumLegos.self_trace!(cmat, 16, 17)
|
||||
@test_throws ArgumentError QuantumLegos.self_trace!(cmat, 18, 17)
|
||||
end
|
||||
end
|
||||
|
||||
@testset "State" begin
|
||||
@testset "LegoLeg" begin
|
||||
@test LegoLeg(0, 1) < LegoLeg(1, 0)
|
||||
@test LegoLeg(2, 1) > LegoLeg(1, 0)
|
||||
@test LegoLeg(1, 0) < LegoLeg(1, 1)
|
||||
@test LegoLeg(1, 1) == LegoLeg(1, 1)
|
||||
|
||||
@test sort(LegoLeg.([(1, 2), (2, 3), (0, 2), (0, 1)])) ==
|
||||
LegoLeg[LegoLeg(0, 1), LegoLeg(0, 2), LegoLeg(1, 2), LegoLeg(2, 3)]
|
||||
end
|
||||
@testset "edge" begin
|
||||
@test edge(1, 2, 3, 4) == (LegoLeg(1, 2), LegoLeg(3, 4))
|
||||
@test edge((1, 2, 3, 4)) == (LegoLeg(1, 2), LegoLeg(3, 4))
|
||||
@test edge(((1, 2), (3, 4))) == (LegoLeg(1, 2), LegoLeg(3, 4))
|
||||
end
|
||||
@testset "0 lego, 0 leg" begin
|
||||
@test_throws ArgumentError QuantumLegos.State(Lego{6}[], Tuple{LegoLeg, LegoLeg}[])
|
||||
end
|
||||
@testset "1 lego, 0 leg" begin
|
||||
stabgens = pauliop.(["IIXX", "XXII", "IZZI", "ZIIZ"])
|
||||
lego = QuantumLegos.Lego(stabgens)
|
||||
state = QuantumLegos.State([lego], Tuple{LegoLeg, LegoLeg}[])
|
||||
cmat = QuantumLegos.checkmatrix(stabgens)
|
||||
@test state == QuantumLegos.State([lego], Tuple{LegoLeg, LegoLeg}[])
|
||||
@test state.legos == [lego]
|
||||
@test state.edges == Tuple{LegoLeg, LegoLeg}[]
|
||||
@test state.cmat == cmat
|
||||
end
|
||||
@testset "2+ legos, 0 leg" begin
|
||||
stabgens = pauliop.(["IIXX", "XXII", "IZZI", "ZIIZ"])
|
||||
lego = QuantumLegos.Lego(stabgens)
|
||||
state_1 = QuantumLegos.State([lego], Tuple{LegoLeg, LegoLeg}[])
|
||||
add_lego!(state_1, lego)
|
||||
@test state_1.legos == [lego, lego]
|
||||
@test state_1.edges == Tuple{LegoLeg, LegoLeg}[]
|
||||
@test state_1.cmat.ngens == 8
|
||||
@test state_1.cmat.nlegs == 8
|
||||
state_2 = QuantumLegos.State([lego, lego], Tuple{LegoLeg, LegoLeg}[])
|
||||
@test state_1 == state_2
|
||||
@test all(state_2.cmat.cmat[5:8, 1:4] .== false) # block diagonal
|
||||
end
|
||||
@testset "2+ legos, 1+ legs" begin
|
||||
stabgens = pauliop.(["IIXX", "XXII", "IZZI", "ZIIZ"])
|
||||
lego = QuantumLegos.Lego(stabgens)
|
||||
@test_throws ArgumentError State([lego, lego], edge.([(1, 1, 1, 1)]))
|
||||
end
|
||||
@testset "is_connected_to_firstlego" begin
|
||||
stabilizers = pauliop.(["IIXXXX", "IIZZZZ", "ZIZIZI", "IZIZIZ", "IXIIXX", "XIXXII"])
|
||||
lego = Lego(stabilizers)
|
||||
let
|
||||
state =
|
||||
State(fill(lego, 6), edge.([(3, 2, 1, 5), (5, 2, 3, 3), (4, 1, 5, 1)]))
|
||||
@test QuantumLegos.is_connected_to_firstlego(state) ==
|
||||
BitVector([1, 0, 1, 1, 1, 0])
|
||||
end
|
||||
let
|
||||
state = State(
|
||||
fill(lego, 7),
|
||||
edge.([(3, 2, 1, 5), (5, 2, 3, 3), (4, 1, 5, 1), (2, 2, 3, 1)]),
|
||||
)
|
||||
@test QuantumLegos.is_connected_to_firstlego(state) ==
|
||||
BitVector([1, 1, 1, 1, 1, 0, 0])
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "Doctest" begin
|
||||
DocMeta.setdocmeta!(
|
||||
QuantumLegos,
|
||||
:DocTestSetup,
|
||||
:(using QuantumLegos; ENV["JULIA_DEBUG"] = "");
|
||||
recursive = true,
|
||||
)
|
||||
doctest(QuantumLegos)
|
||||
end
|
||||
|
||||
# @testset "Code quality (Aqua.jl)" begin
|
||||
# Aqua.test_all(QuantumLegos)
|
||||
# end
|
||||
# @testset "Code linting (JET.jl)" begin
|
||||
# JET.test_package(QuantumLegos; target_defined_modules = true)
|
||||
# end
|
||||
end
|
Loading…
Reference in a new issue