### A Pluto.jl notebook ### # v0.19.46 using Markdown using InteractiveUtils # ╔═╡ 7c69d12c-80a5-11ef-2674-e155a3483342 begin using Pkg Pkg.activate("..") Pkg.status() true || include("../src/PSBoardDataBase.jl") end # ╔═╡ effa7ed9-2ac4-4468-a474-e2bb662580fe begin using PSBoardDataBase using SQLite using DataFrames using DBInterface using Tables using CairoMakie using Statistics using PlutoUI end # ╔═╡ f25e7e08-8a73-4cac-ac7c-d310725c558d md""" # Detailed research on clock skew measurement - distribution of clock skews - consistency of multiple measurement on the same board """ # ╔═╡ 1a6322d4-9deb-4709-aa2e-df7d8be5b16f TableOfContents() # ╔═╡ 11537f91-e16b-45f0-9768-6df842371d36 db = SQLite.DB("../psboard_qaqc.db") # ╔═╡ 268d3015-b8d3-48d9-b74a-062e258e0ec1 SQLite.tables(db) # ╔═╡ 62105832-df1f-4834-8da6-c542e22207d1 md""" ## Single runs """ # ╔═╡ dea6f143-7916-4765-92f6-2bfb97a72835 qaqc_single_results = DBInterface.execute(db, sql"select * from qaqc_single_run_results") |> DataFrame # ╔═╡ 41543c0c-d7c4-447b-a268-0d356c88d92c md""" ## PS Board list """ # ╔═╡ 633ecdee-7e2f-4de8-833a-21cd0351c1f1 DBInterface.execute( db, sql""" select * from ps_boards """, ) |> DataFrame # ╔═╡ 87f1966e-3b07-4f9d-8fc4-7b7aa4319d50 md""" ## Run list """ # ╔═╡ f379d43c-9300-41f4-b0fc-3c9d749e3105 qaqc_runs = DBInterface.execute(db, sql"select * from qaqc_runs") |> DataFrame # ╔═╡ 33e099bc-ac4b-4b5f-88e7-20f4463c98ef md""" ## Positions """ # ╔═╡ 0e13f848-0efb-4775-9e3e-518b32588a79 qaqc_positions = DBInterface.execute(db, sql"select * from qaqc_positions") |> DataFrame # ╔═╡ 181c3fe6-d087-42e2-b175-3fb84c42e3e8 position_id_skew_map = select(qaqc_positions, [:id, :rising_ns]) |> Tables.rowtable |> Dict # ╔═╡ 322cb530-65a5-4973-86f8-01ccc2439cc4 md""" # Clock Analysis main part """ # ╔═╡ c1caca5f-4cfd-4f22-82b4-7925002359e6 clk_files = readdir("../test/input/slavelogs/main/", join = true) |> filter(endswith("_clk.txt")) |> filter(!contains("nagoya")) |> filter(!contains("630_190")) # ╔═╡ 3e5607fd-2a8a-4a1a-9e7b-3f23ef216fad """ Get `(psbid, runid)`. """ function parse_filename(filename::AbstractString) m = match(r"(?\d+)_(?\d+)_clk\.txt", filename) parse(Int64, m[:psbid]), parse(Int64, m[:runid]) end # ╔═╡ c1b9c0c3-00f8-4199-b07f-8888f1be625c parse_filename("190_23_clk.txt") # ╔═╡ d6d04013-e0e4-49d5-a450-07ae164bfaa3 # Get skew and rise up time from clock measurement files # Use measurements recorded in qaqc_single_results df_rawskews = clk_files .|> ( file -> begin skew_width = PSBoardDataBase.ClockParser.get_skew_and_riseup(file) psbid, runid = parse_filename(file) (psbid = psbid, runid = runid, skew = skew_width[1], width = skew_width[2]) end ) |> filter( x -> filter( [:psboard_id, :runid] => ((psbid, runid) -> (psbid == x.psbid && runid == x.runid)), qaqc_single_results, ) |> !isempty, ) |> DataFrame # ╔═╡ d7541b93-4c49-4dcd-bda0-91e447f44596 # substract result of measurements of position dependency df_skews = let df = leftjoin( df_rawskews, @view(qaqc_single_results[!, [:psboard_id, :runid, :position]]), on = [:psbid => :psboard_id, :runid], ) leftjoin!(df, @view(qaqc_positions[!, [:id, :rising_ns]]), on = [:position => :id]) transform!(df, [:skew, :rising_ns] => ByRow((x, y) -> x - y) => :skew) select!(df, Not(:rising_ns)) select!(df, Not(:position)) end # ╔═╡ 420dce0e-4757-48d9-84ec-7ddfac2fdff6 stephist(df_skews.width |> skipmissing |> collect) # ╔═╡ d082e07c-3b42-4362-bebf-63356979a49b gdf_skews_on_psbid = groupby(df_skews, :psbid) # ╔═╡ 25688d24-5aee-43d3-aff9-b9efa0556070 combine(nrow, gdf_skews_on_psbid) # ╔═╡ 239a808c-0411-4542-ae68-6ae6af333bd2 df_nrow_ordered = let df = combine(nrow, gdf_skews_on_psbid) sort!(df, :nrow, rev = true) end # ╔═╡ 8e57bde1-5f97-483d-906e-8ebfb65016d0 @view(df_nrow_ordered[findall(>(1), df_nrow_ordered.nrow), :]) # ╔═╡ 92c2ac3f-8034-4e9e-aadb-8bb166fbc948 df_skew_stats = let df = combine( gdf_skews_on_psbid, sdf -> begin if nrow(sdf) == 1 (; mean_skew = mean(sdf.skew), std_skew = missing, n = 1) else (; mean_skew = mean(sdf.skew), std_skew = std(sdf.skew), n = nrow(sdf)) end end, ) dropmissing!(df) df end # ╔═╡ 893253c3-f0b2-401f-b892-b23291bcf5c1 fig_skew_stats = let fig, ax, sc = scatter( df_skew_stats.mean_skew, df_skew_stats.std_skew, marker = :x, color = (Makie.wong_colors()[1], 0.8), axis = (title = "skew mean vs std", xlabel = "mean", ylabel = "std"), ) text!( ax, df_skew_stats.mean_skew, df_skew_stats.std_skew, text = string.(df_skew_stats.psbid), color = (:gray, 0.5), ) fig end # ╔═╡ 6467dcaa-6bd6-45c7-8c08-b310a09b8b0b save("clock_skew_stats.svg", fig_skew_stats) # ╔═╡ 79e2f5d8-4609-4e9f-949e-6dc1f88c0b19 df_skew_stats_abnormals = filter([:mean_skew, :std_skew] => ((m, s) -> m > -5 && s > 1), df_skew_stats) # ╔═╡ d607e10e-854f-4652-9a34-9e22a188e315 let df = df_skew_stats_abnormals fig, ax, sc = scatter( df.mean_skew, df.std_skew, marker = :x, color = (Makie.wong_colors()[1], 0.8), axis = (title = "skew mean vs std", xlabel = "mean", ylabel = "std"), ) text!( ax, df.mean_skew, df.std_skew, text = string.(df.psbid) .* "," .* string.(df.n), color = (:gray, 0.7), ) fig end # ╔═╡ 2795fd06-2f59-4e5b-829d-a8e428646790 md""" ## 分散が異常に大きいやつ 基本的に予想通り、分散は小さく複数回の測定で整合的な結果が得られているが、いくつか例外があった。 はじめはpsbid 127(4回測定)が含まれていたが、これはデータベースの編集ミスであることがわかり、修正した結果、消えた。 ### psbid: 291 - run: 83, 94 - 83でcommunication error(SFP半抜け) ### psbid: 460 - run: 105, 132 - psbid 444と同じく電源の抜き差しによってクロックの0と1000が繰り返されたパターン - 追試に送られてる ### psbid: 545 (**問題の**) - run: 126, 132 - どちらも測定結果自体には変なところはない - どちらも1回だけ立ち上がりがある - 立ち上がりもそれほど長くない - 126が電源が不安定なときだったかもしれないが、記録がない """ # ╔═╡ Cell order: # ╟─f25e7e08-8a73-4cac-ac7c-d310725c558d # ╠═7c69d12c-80a5-11ef-2674-e155a3483342 # ╠═effa7ed9-2ac4-4468-a474-e2bb662580fe # ╠═1a6322d4-9deb-4709-aa2e-df7d8be5b16f # ╠═11537f91-e16b-45f0-9768-6df842371d36 # ╠═268d3015-b8d3-48d9-b74a-062e258e0ec1 # ╟─62105832-df1f-4834-8da6-c542e22207d1 # ╠═dea6f143-7916-4765-92f6-2bfb97a72835 # ╟─41543c0c-d7c4-447b-a268-0d356c88d92c # ╠═633ecdee-7e2f-4de8-833a-21cd0351c1f1 # ╟─87f1966e-3b07-4f9d-8fc4-7b7aa4319d50 # ╠═f379d43c-9300-41f4-b0fc-3c9d749e3105 # ╟─33e099bc-ac4b-4b5f-88e7-20f4463c98ef # ╠═0e13f848-0efb-4775-9e3e-518b32588a79 # ╠═181c3fe6-d087-42e2-b175-3fb84c42e3e8 # ╟─322cb530-65a5-4973-86f8-01ccc2439cc4 # ╠═c1caca5f-4cfd-4f22-82b4-7925002359e6 # ╠═3e5607fd-2a8a-4a1a-9e7b-3f23ef216fad # ╠═c1b9c0c3-00f8-4199-b07f-8888f1be625c # ╠═d6d04013-e0e4-49d5-a450-07ae164bfaa3 # ╠═d7541b93-4c49-4dcd-bda0-91e447f44596 # ╠═420dce0e-4757-48d9-84ec-7ddfac2fdff6 # ╠═d082e07c-3b42-4362-bebf-63356979a49b # ╠═25688d24-5aee-43d3-aff9-b9efa0556070 # ╠═239a808c-0411-4542-ae68-6ae6af333bd2 # ╠═8e57bde1-5f97-483d-906e-8ebfb65016d0 # ╠═92c2ac3f-8034-4e9e-aadb-8bb166fbc948 # ╠═893253c3-f0b2-401f-b892-b23291bcf5c1 # ╠═6467dcaa-6bd6-45c7-8c08-b310a09b8b0b # ╠═79e2f5d8-4609-4e9f-949e-6dc1f88c0b19 # ╠═d607e10e-854f-4652-9a34-9e22a188e315 # ╠═2795fd06-2f59-4e5b-829d-a8e428646790