mirror of
https://gitlab.cern.ch/wotsubo/PSBoardDataBase.git
synced 2025-06-08 05:55:42 +09:00
561 lines
17 KiB
Julia
561 lines
17 KiB
Julia
### A Pluto.jl notebook ###
|
||
# v0.19.46
|
||
|
||
using Markdown
|
||
using InteractiveUtils
|
||
|
||
# ╔═╡ 7c69d12c-80a5-11ef-2674-e155a3483342
|
||
begin
|
||
using Pkg
|
||
Pkg.activate("..")
|
||
Pkg.status()
|
||
true || include("../src/PSBoardDataBase.jl")
|
||
end
|
||
|
||
# ╔═╡ effa7ed9-2ac4-4468-a474-e2bb662580fe
|
||
begin
|
||
using PSBoardDataBase
|
||
using SQLite
|
||
using DataFrames
|
||
using DBInterface
|
||
using Tables
|
||
using CairoMakie
|
||
using Statistics
|
||
using PlutoUI
|
||
using Random
|
||
end
|
||
|
||
# ╔═╡ f25e7e08-8a73-4cac-ac7c-d310725c558d
|
||
md"""
|
||
# Detailed research on clock skew measurement
|
||
- distribution of clock skews
|
||
- consistency of multiple measurement on the same board
|
||
"""
|
||
|
||
# ╔═╡ 1a6322d4-9deb-4709-aa2e-df7d8be5b16f
|
||
TableOfContents(depth = 4)
|
||
|
||
# ╔═╡ 11537f91-e16b-45f0-9768-6df842371d36
|
||
db = SQLite.DB("../psboard_qaqc.db")
|
||
|
||
# ╔═╡ 268d3015-b8d3-48d9-b74a-062e258e0ec1
|
||
SQLite.tables(db)
|
||
|
||
# ╔═╡ 62105832-df1f-4834-8da6-c542e22207d1
|
||
md"""
|
||
## Single runs
|
||
"""
|
||
|
||
# ╔═╡ dea6f143-7916-4765-92f6-2bfb97a72835
|
||
qaqc_single_results =
|
||
DBInterface.execute(db, sql"select * from qaqc_single_run_results") |> DataFrame
|
||
|
||
# ╔═╡ 41543c0c-d7c4-447b-a268-0d356c88d92c
|
||
md"""
|
||
## PS Board list
|
||
"""
|
||
|
||
# ╔═╡ 633ecdee-7e2f-4de8-833a-21cd0351c1f1
|
||
DBInterface.execute(
|
||
db,
|
||
sql"""
|
||
select * from ps_boards
|
||
""",
|
||
) |> DataFrame
|
||
|
||
# ╔═╡ 87f1966e-3b07-4f9d-8fc4-7b7aa4319d50
|
||
md"""
|
||
## Run list
|
||
"""
|
||
|
||
# ╔═╡ f379d43c-9300-41f4-b0fc-3c9d749e3105
|
||
qaqc_runs = DBInterface.execute(db, sql"select * from qaqc_runs") |> DataFrame
|
||
|
||
# ╔═╡ 33e099bc-ac4b-4b5f-88e7-20f4463c98ef
|
||
md"""
|
||
## Positions
|
||
"""
|
||
|
||
# ╔═╡ 0e13f848-0efb-4775-9e3e-518b32588a79
|
||
qaqc_positions = DBInterface.execute(db, sql"select * from qaqc_positions") |> DataFrame
|
||
|
||
# ╔═╡ 181c3fe6-d087-42e2-b175-3fb84c42e3e8
|
||
position_id_skew_map = select(qaqc_positions, [:id, :rising_ns]) |> Tables.rowtable |> Dict
|
||
|
||
# ╔═╡ dd669f14-989b-45ee-87d8-5d9cf282fafd
|
||
md"""
|
||
## Dispatch
|
||
"""
|
||
|
||
# ╔═╡ 1e9c3944-0cd4-40da-9014-a9153d4e95ed
|
||
qaqc_dispatch = DBInterface.execute(db, sql"select * from qaqc_dispatch") |> DataFrame
|
||
|
||
# ╔═╡ 322cb530-65a5-4973-86f8-01ccc2439cc4
|
||
md"""
|
||
# Clock Analysis
|
||
main part
|
||
"""
|
||
|
||
# ╔═╡ c1caca5f-4cfd-4f22-82b4-7925002359e6
|
||
clk_files =
|
||
readdir("../test/input/slavelogs/main/", join = true) |>
|
||
filter(endswith("_clk.txt")) |>
|
||
filter(!contains("nagoya")) |>
|
||
filter(!contains("630_190"))
|
||
|
||
# ╔═╡ 3e5607fd-2a8a-4a1a-9e7b-3f23ef216fad
|
||
"""
|
||
Get `(psbid, runid)`.
|
||
"""
|
||
function parse_filename(filename::AbstractString)
|
||
m = match(r"(?<psbid>\d+)_(?<runid>\d+)_clk\.txt", filename)
|
||
parse(Int64, m[:psbid]), parse(Int64, m[:runid])
|
||
end
|
||
|
||
# ╔═╡ c1b9c0c3-00f8-4199-b07f-8888f1be625c
|
||
parse_filename("190_23_clk.txt")
|
||
|
||
# ╔═╡ d6d04013-e0e4-49d5-a450-07ae164bfaa3
|
||
# Get skew and rise up time from clock measurement files
|
||
# Use measurements recorded in qaqc_single_results
|
||
df_rawskews =
|
||
clk_files .|>
|
||
(
|
||
file -> begin
|
||
skew_width = PSBoardDataBase.ClockParser.get_skew_and_riseup(file)
|
||
psbid, runid = parse_filename(file)
|
||
(psbid = psbid, runid = runid, skew = skew_width[1], width = skew_width[2])
|
||
end
|
||
) |>
|
||
filter(
|
||
x ->
|
||
filter(
|
||
[:psboard_id, :runid] =>
|
||
((psbid, runid) -> (psbid == x.psbid && runid == x.runid)),
|
||
qaqc_single_results,
|
||
) |> !isempty,
|
||
) |>
|
||
DataFrame
|
||
|
||
# ╔═╡ 0e680044-e4e1-4f39-a5c5-afa5c53fc7a7
|
||
clk_files |> filter(contains("168")) .|> PSBoardDataBase.ClockParser.get_skew_and_riseup
|
||
|
||
# ╔═╡ d7541b93-4c49-4dcd-bda0-91e447f44596
|
||
# substract result of measurements of position dependency
|
||
df_skews = let
|
||
df = leftjoin(
|
||
df_rawskews,
|
||
@view(qaqc_single_results[!, [:psboard_id, :runid, :position]]),
|
||
on = [:psbid => :psboard_id, :runid],
|
||
)
|
||
leftjoin!(df, @view(qaqc_positions[!, [:id, :rising_ns]]), on = [:position => :id])
|
||
transform!(df, [:skew, :rising_ns] => ByRow((x, y) -> x - y) => :skew)
|
||
select!(df, Not(:rising_ns))
|
||
select!(df, Not(:position))
|
||
end
|
||
|
||
# ╔═╡ e7faa647-79cd-4247-a3f2-9868c7b9d4ca
|
||
md"""
|
||
## skewの分布
|
||
|
||
``skew = rising\_time_{psbid, position} - rising\_time_{position}``
|
||
"""
|
||
|
||
# ╔═╡ 3a412a98-4a2d-4bfb-8053-b0f480fae921
|
||
let
|
||
skews = skipmissing(df_skews.skew) |> collect
|
||
npsbid = df_skews.psbid |> unique |> length
|
||
fig = Figure()
|
||
ax = Axis(
|
||
fig[1, 1],
|
||
title = "skews of all measurements (n_meas = $(length(skews)), n_psb = $(npsbid))",
|
||
xlabel = "skew / ns",
|
||
)
|
||
stephist!(ax, skews, bins = range(minimum(skews), maximum(skews), step = 1 / 57))
|
||
fig
|
||
end
|
||
|
||
# ╔═╡ b38bbed4-8721-4e92-a546-f7926cc07dd3
|
||
md"""
|
||
## 立ち上がり時間の分布
|
||
"""
|
||
|
||
# ╔═╡ 420dce0e-4757-48d9-84ec-7ddfac2fdff6
|
||
let
|
||
skew_widths = df_skews.width |> skipmissing |> collect
|
||
hist(
|
||
skew_widths,
|
||
bins = range(minimum(skew_widths), maximum(skew_widths), step = 1 / 57),
|
||
bar_labels = :y,
|
||
label_size = 14,
|
||
label_formatter = x -> "$(round(Int, x))",
|
||
axis = (
|
||
title = "clock rise span distribution",
|
||
xlabel = "rise up span / ns",
|
||
ylabel = "counts",
|
||
limits = ((0, 0.18), (0, nothing)),
|
||
),
|
||
)
|
||
end
|
||
|
||
# ╔═╡ 99902640-fee3-4502-9c7e-cb08834bad0b
|
||
maximum(skipmissing(df_skews.width)) / (1 / 57)
|
||
|
||
# ╔═╡ c79c6684-1b03-41b5-aa90-ef8c7a8eb69c
|
||
md"""
|
||
この結果を元に、クロック試験のしきい値は$(round(9 * 1 / 57; digits = 2))ns以上に設定
|
||
"""
|
||
|
||
# ╔═╡ ec774495-c0be-47a4-9d2c-b48159c07013
|
||
md"""
|
||
## 各PSBoardごとの統計
|
||
"""
|
||
|
||
# ╔═╡ d082e07c-3b42-4362-bebf-63356979a49b
|
||
gdf_skews_on_psbid = groupby(df_skews, :psbid)
|
||
|
||
# ╔═╡ 25688d24-5aee-43d3-aff9-b9efa0556070
|
||
combine(nrow, gdf_skews_on_psbid)
|
||
|
||
# ╔═╡ 239a808c-0411-4542-ae68-6ae6af333bd2
|
||
df_nrow_ordered = let
|
||
df = combine(nrow, gdf_skews_on_psbid)
|
||
sort!(df, :nrow, rev = true)
|
||
end
|
||
|
||
# ╔═╡ 8e57bde1-5f97-483d-906e-8ebfb65016d0
|
||
@view(df_nrow_ordered[findall(>(1), df_nrow_ordered.nrow), :])
|
||
|
||
# ╔═╡ 92c2ac3f-8034-4e9e-aadb-8bb166fbc948
|
||
df_skew_stats = let
|
||
df = combine(
|
||
gdf_skews_on_psbid,
|
||
sdf -> begin
|
||
if nrow(sdf) == 1
|
||
(; mean_skew = mean(sdf.skew), std_skew = missing, n = 1)
|
||
else
|
||
(; mean_skew = mean(sdf.skew), std_skew = std(sdf.skew), n = nrow(sdf))
|
||
end
|
||
end,
|
||
)
|
||
dropmissing!(df)
|
||
df
|
||
end
|
||
|
||
# ╔═╡ 893253c3-f0b2-401f-b892-b23291bcf5c1
|
||
fig_skew_stats = let
|
||
fig, ax, sc = scatter(
|
||
df_skew_stats.mean_skew,
|
||
df_skew_stats.std_skew,
|
||
marker = :x,
|
||
color = (Makie.wong_colors()[1], 0.8),
|
||
axis = (title = "skew mean vs std", xlabel = "mean", ylabel = "std"),
|
||
)
|
||
text!(
|
||
ax,
|
||
df_skew_stats.mean_skew,
|
||
df_skew_stats.std_skew,
|
||
text = string.(df_skew_stats.psbid),
|
||
color = (:gray, 0.5),
|
||
)
|
||
fig
|
||
end
|
||
|
||
# ╔═╡ 6467dcaa-6bd6-45c7-8c08-b310a09b8b0b
|
||
save("clock_skew_stats.svg", fig_skew_stats)
|
||
|
||
# ╔═╡ 79e2f5d8-4609-4e9f-949e-6dc1f88c0b19
|
||
df_skew_stats_abnormals = let
|
||
df = filter([:mean_skew, :std_skew] => ((m, s) -> m > -5 && s > 1), df_skew_stats)
|
||
sort!(df, :psbid)
|
||
df
|
||
end
|
||
|
||
# ╔═╡ eae649db-6b2b-4530-83a8-3438f29423cc
|
||
let
|
||
df = filter(
|
||
:psboard_id => in(df_skew_stats_abnormals.psbid),
|
||
qaqc_single_results,
|
||
)
|
||
select!(df, [:runid, :psboard_id, :lvds_tx_skew, :note])
|
||
df
|
||
end
|
||
|
||
# ╔═╡ d607e10e-854f-4652-9a34-9e22a188e315
|
||
let
|
||
df = df_skew_stats_abnormals
|
||
fig, ax, sc = scatter(
|
||
df.mean_skew,
|
||
df.std_skew,
|
||
marker = :x,
|
||
color = (Makie.wong_colors()[1], 0.8),
|
||
axis = (title = "skew mean vs std", xlabel = "mean", ylabel = "std"),
|
||
)
|
||
text!(
|
||
ax,
|
||
df.mean_skew,
|
||
df.std_skew,
|
||
text = string.(df.psbid) .* "," .* string.(df.n),
|
||
color = (:gray, 0.7),
|
||
)
|
||
fig
|
||
end
|
||
|
||
# ╔═╡ 5bef43cf-0f9b-40a2-bd47-620f42c36d8d
|
||
gdf_skews_on_psbid[(psbid = 215,)]
|
||
|
||
# ╔═╡ 2795fd06-2f59-4e5b-829d-a8e428646790
|
||
md"""
|
||
### 分散が異常に大きいやつ
|
||
基本的に予想通り、分散は小さく複数回の測定で整合的な結果が得られているが、いくつか例外があった。
|
||
|
||
はじめはpsbid 127(4回測定)が含まれていたが、これはデータベースの編集ミスであることがわかり、修正した結果、消えた。
|
||
|
||
!!! todo
|
||
他の例外も確認する。
|
||
`df_skew_stats_abnormals`を確認
|
||
|
||
#### psbid: 215
|
||
- run: 43, 47
|
||
- run 43で"QSPI device ID does not match. inclueded in RUN45-, RUN47と49で問題が無いことを確認"
|
||
- run 47を使用?
|
||
#### psbid: 291
|
||
- run: 83, 94
|
||
- 83でcommunication error(SFP半抜け)
|
||
#### psbid: 442
|
||
- run: 103, 132
|
||
- 103の結果がinvalid(460と同じ)
|
||
#### psbid: 460
|
||
- run: 105, 132
|
||
- psbid 444と同じく電源の抜き差しによってクロックの0と1000が繰り返されたパターン
|
||
- 追試に送られてる
|
||
#### psbid: 462
|
||
- run: 105, 132
|
||
- psbid 460と同じく105がだめ
|
||
#### psbid: 545 (**問題の**)
|
||
- run: 126, 132
|
||
- どちらも測定結果自体には変なところはない
|
||
- どちらも1回だけ立ち上がりがある
|
||
- 立ち上がりもそれほど長くない
|
||
- 126が電源が不安定なときだったかもしれないが、記録がない
|
||
#### psbid: 799
|
||
- run: 217, 236
|
||
- 217の結果が壊れてる
|
||
#### psbid: 802
|
||
- run: 217, 236
|
||
- 217の結果が壊れてる
|
||
"""
|
||
|
||
# ╔═╡ 26976b6c-3954-4a41-a99b-c1aaebdc645d
|
||
md"""
|
||
### skewの分布
|
||
"""
|
||
|
||
# ╔═╡ 38d472ca-6347-4096-828d-fd1256130a59
|
||
df_skews_selected = combine(
|
||
gdf_skews_on_psbid,
|
||
sdf -> begin
|
||
all(ismissing, sdf.skew) && @info "" sdf
|
||
if nrow(sdf) == 1
|
||
@assert sdf.skew |> first |> !ismissing
|
||
(skew = sdf.skew |> first, width = sdf.width |> first)
|
||
else
|
||
if sdf.psbid[1] == 291
|
||
df = filter(:runid => ==(94), sdf)
|
||
@assert nrow(df) == 1
|
||
(skew = df.skew |> first, width = sdf.width |> first)
|
||
elseif sdf.psbid[1] == 460
|
||
df = filter(:runid => ==(132), sdf)
|
||
@assert nrow(df) == 1
|
||
(skew = df.skew |> first, width = sdf.width |> first)
|
||
elseif sdf.psbid[1] == 545
|
||
@error "temp"
|
||
df = filter(:runid => ==(132), sdf)
|
||
@assert nrow(df) == 1
|
||
(skew = df.skew |> first, width = sdf.width |> first)
|
||
else
|
||
# assume that runid is chronological
|
||
i = argmax(sdf.runid .|> (id -> ismissing(id) ? -1 : id))
|
||
(skew = sdf.skew[i], width = sdf.width[i])
|
||
end
|
||
end
|
||
end,
|
||
)
|
||
|
||
# ╔═╡ 310710da-ebb2-4f54-b238-38d493a6a533
|
||
let
|
||
skews = df_skews_selected.skew |> skipmissing |> collect
|
||
fig = Figure()
|
||
ax = Axis(fig[1, 1], title = "skews (n = $(length(skews)))", xlabel = "skew / ns")
|
||
stephist!(ax, skews, bins = range(minimum(skews), maximum(skews), step = 1 / 57))
|
||
fig
|
||
end
|
||
|
||
# ╔═╡ e9964184-1a2a-4ab9-bc22-2705a25393ec
|
||
filter(:skew => (x -> !ismissing(x) && x < -3), df_skews_selected)
|
||
|
||
# ╔═╡ f2d0ea9b-ede7-496a-8d1f-9f748f9d1666
|
||
transform(
|
||
filter(:skew => ismissing, df_skews_selected),
|
||
:psbid => ByRow(psbid -> begin
|
||
psbid in qaqc_dispatch.psb_id
|
||
end) => :is_dispatched,
|
||
)
|
||
|
||
# ╔═╡ f5bc8b1a-3fee-48ed-9910-367a1cda632e
|
||
md"""
|
||
- psbid: 255
|
||
- Si not locked
|
||
"""
|
||
|
||
# ╔═╡ 9f3f780d-da6e-44b4-a002-c2f088681e9c
|
||
df_skews_selected_sorted = let
|
||
df = sort(df_skews_selected, :skew)
|
||
dropmissing!(df, :skew)
|
||
df
|
||
end
|
||
|
||
# ╔═╡ 6c3c7669-d594-425d-bf05-9aa217c7656e
|
||
md"""
|
||
## turn on curves
|
||
- lines on
|
||
- the minimum and maximum skews
|
||
- the minimum and maximum widths
|
||
"""
|
||
|
||
# ╔═╡ e9b3f541-d87d-4424-8b82-be1b7b3273d8
|
||
let
|
||
psbid_width_min, psbid_width_max, psbid_width_typical = let
|
||
df_normal = filter(:width => >(0.06), df_skews_selected_sorted)
|
||
sort!(df_normal, :width)
|
||
df_typical = filter(:width => (x -> 0.08 < x < 0.11), df_normal)
|
||
rng = Random.Xoshiro(123)
|
||
id_rand_typical = rand(rng, 1:nrow(df_typical))
|
||
first(df_normal).psbid, last(df_normal).psbid, df_typical[id_rand_typical, :psbid]
|
||
end
|
||
psbid_with_lines = [
|
||
psbid_width_max,
|
||
psbid_width_min,
|
||
psbid_width_typical,
|
||
]
|
||
|
||
fig = Figure()
|
||
ax = Axis(
|
||
fig[1, 1],
|
||
title = "clock turn on curves",
|
||
subtitle = "aligned on the last count = 0 points",
|
||
xlabel = "ns",
|
||
ylabel = "counts",
|
||
limits = ((-0.05, 0.15), (0, 1000)),
|
||
)
|
||
for file in clk_files
|
||
psbid, runid = parse_filename(file)
|
||
if psbid == 255
|
||
@info "Si not locked: skipped" psbid
|
||
continue
|
||
end
|
||
single_runs = filter(
|
||
[:psboard_id, :runid] => (
|
||
(ref_psbid, ref_runid) -> begin
|
||
psbid == ref_psbid && runid == ref_runid
|
||
end
|
||
),
|
||
qaqc_single_results,
|
||
)
|
||
if nrow(single_runs) != 1
|
||
if nrow(single_runs) != 0
|
||
@info "skipped" psbid runid nrow(single_runs)
|
||
end
|
||
continue
|
||
end
|
||
# offset = qaqc_positions.rising_ns[single_runs.position[1]]
|
||
offset_pos = let
|
||
# df = filter(:psbid => ==(psbid), df_skews_selected_sorted)
|
||
# @assert nrow(df) == 1 "nrow: $(nrow(df)), psbid: $(psbid)"
|
||
# df.skew[1] +
|
||
qaqc_positions.rising_ns[single_runs.position[1]]
|
||
end
|
||
if psbid in psbid_with_lines
|
||
points =
|
||
eachline(file) .|>
|
||
PSBoardDataBase.ClockParser._parse_line .|>
|
||
(x -> (x[1] - offset_pos, x[2]))
|
||
id_first_over0 = findfirst(points) do ((time, count))
|
||
count > 0
|
||
end
|
||
@info "" points[id_first_over0] points[id_first_over0 - 1]
|
||
points = map(points) do ((time, count))
|
||
time - points[id_first_over0][1], count
|
||
end
|
||
stds = map(points) do ((time, count))
|
||
sqrt(count * (1000 - count) / 1000)
|
||
end
|
||
label, color = if psbid == psbid_width_max
|
||
"lomgest ($psbid)", (:red, 0.8)
|
||
elseif psbid == psbid_width_min
|
||
"shortest ($psbid)", (:blue, 0.8)
|
||
elseif psbid == psbid_width_typical
|
||
"typical ($psbid)", (:green, 0.8)
|
||
end
|
||
scatterlines!(ax, points, label = label, color = color)
|
||
@info "" first.(points) stds
|
||
errorbars!(ax, points, stds, whiskerwidth = 10, color = color)
|
||
end
|
||
end
|
||
axislegend(ax, position = :rb)
|
||
fig
|
||
end
|
||
|
||
# ╔═╡ Cell order:
|
||
# ╟─f25e7e08-8a73-4cac-ac7c-d310725c558d
|
||
# ╠═7c69d12c-80a5-11ef-2674-e155a3483342
|
||
# ╠═effa7ed9-2ac4-4468-a474-e2bb662580fe
|
||
# ╠═1a6322d4-9deb-4709-aa2e-df7d8be5b16f
|
||
# ╠═11537f91-e16b-45f0-9768-6df842371d36
|
||
# ╠═268d3015-b8d3-48d9-b74a-062e258e0ec1
|
||
# ╟─62105832-df1f-4834-8da6-c542e22207d1
|
||
# ╠═dea6f143-7916-4765-92f6-2bfb97a72835
|
||
# ╟─41543c0c-d7c4-447b-a268-0d356c88d92c
|
||
# ╠═633ecdee-7e2f-4de8-833a-21cd0351c1f1
|
||
# ╟─87f1966e-3b07-4f9d-8fc4-7b7aa4319d50
|
||
# ╠═f379d43c-9300-41f4-b0fc-3c9d749e3105
|
||
# ╟─33e099bc-ac4b-4b5f-88e7-20f4463c98ef
|
||
# ╠═0e13f848-0efb-4775-9e3e-518b32588a79
|
||
# ╠═181c3fe6-d087-42e2-b175-3fb84c42e3e8
|
||
# ╟─dd669f14-989b-45ee-87d8-5d9cf282fafd
|
||
# ╠═1e9c3944-0cd4-40da-9014-a9153d4e95ed
|
||
# ╟─322cb530-65a5-4973-86f8-01ccc2439cc4
|
||
# ╠═c1caca5f-4cfd-4f22-82b4-7925002359e6
|
||
# ╠═3e5607fd-2a8a-4a1a-9e7b-3f23ef216fad
|
||
# ╠═c1b9c0c3-00f8-4199-b07f-8888f1be625c
|
||
# ╠═d6d04013-e0e4-49d5-a450-07ae164bfaa3
|
||
# ╠═0e680044-e4e1-4f39-a5c5-afa5c53fc7a7
|
||
# ╠═d7541b93-4c49-4dcd-bda0-91e447f44596
|
||
# ╟─e7faa647-79cd-4247-a3f2-9868c7b9d4ca
|
||
# ╠═3a412a98-4a2d-4bfb-8053-b0f480fae921
|
||
# ╟─b38bbed4-8721-4e92-a546-f7926cc07dd3
|
||
# ╠═420dce0e-4757-48d9-84ec-7ddfac2fdff6
|
||
# ╠═99902640-fee3-4502-9c7e-cb08834bad0b
|
||
# ╠═c79c6684-1b03-41b5-aa90-ef8c7a8eb69c
|
||
# ╟─ec774495-c0be-47a4-9d2c-b48159c07013
|
||
# ╠═d082e07c-3b42-4362-bebf-63356979a49b
|
||
# ╠═25688d24-5aee-43d3-aff9-b9efa0556070
|
||
# ╠═239a808c-0411-4542-ae68-6ae6af333bd2
|
||
# ╠═8e57bde1-5f97-483d-906e-8ebfb65016d0
|
||
# ╠═92c2ac3f-8034-4e9e-aadb-8bb166fbc948
|
||
# ╠═893253c3-f0b2-401f-b892-b23291bcf5c1
|
||
# ╠═6467dcaa-6bd6-45c7-8c08-b310a09b8b0b
|
||
# ╠═79e2f5d8-4609-4e9f-949e-6dc1f88c0b19
|
||
# ╠═eae649db-6b2b-4530-83a8-3438f29423cc
|
||
# ╠═d607e10e-854f-4652-9a34-9e22a188e315
|
||
# ╠═5bef43cf-0f9b-40a2-bd47-620f42c36d8d
|
||
# ╠═2795fd06-2f59-4e5b-829d-a8e428646790
|
||
# ╟─26976b6c-3954-4a41-a99b-c1aaebdc645d
|
||
# ╠═38d472ca-6347-4096-828d-fd1256130a59
|
||
# ╠═310710da-ebb2-4f54-b238-38d493a6a533
|
||
# ╠═e9964184-1a2a-4ab9-bc22-2705a25393ec
|
||
# ╠═f2d0ea9b-ede7-496a-8d1f-9f748f9d1666
|
||
# ╠═f5bc8b1a-3fee-48ed-9910-367a1cda632e
|
||
# ╠═9f3f780d-da6e-44b4-a002-c2f088681e9c
|
||
# ╠═6c3c7669-d594-425d-bf05-9aa217c7656e
|
||
# ╠═e9b3f541-d87d-4424-8b82-be1b7b3273d8
|