ml-test/transformers.jl

274 lines
8.4 KiB
Julia
Raw Normal View History

2025-01-28 22:19:46 +09:00
# using LuxCore
using Random: AbstractRNG
using Lux
"""
MultiheadAttention{F} <: LuxCore.AbstractLuxLayer
Multi head attention layer used in Transformer model.
2025-01-28 22:19:46 +09:00
# Fields
- `embed_dim`: Queue vector length. `q_len`
2025-02-03 22:09:23 +09:00
- `kvdim::Int`: Key vector and value vector length.
2025-01-28 22:19:46 +09:00
- `num_heads`: Number of heads.
2025-02-03 22:09:23 +09:00
# Calculation
```math
\\begin{aligned}
Q &\\in \\mathbb{R}^{qdim} \\\\
W^Q &\\in M_{embed \\times qdim}(\\mathbb{R}) \\\\
K &\\in \\mathbb{R}^{kvdim} \\\\
W^K &\\in M_{embed \\times kvdim}(\\mathbb{R}) \\\\
V &\\in \\mathbb{R}^{kvdim} \\\\
W^V &\\in M_{vembed \\times kvdim}(\\mathbb{R}) \\\\
head_i &= \\operatorname{Attention}(W^Q_i Q, W^K_ K, W^V_i V) \\\\
\\operatorname{Attention}(Q, K, V) &= V \\operatorname{softmax}\\left(\\frac{K^T Q}{\\sqrt{kvdim}} \\right) \\\\
\\operatorname{MultiheadAttention}(Q, K, V) &= W^O \\operatorname{Concat}(head_1, \\ldots, head_h)
\\end{aligned}
```
So far, ``Q, K, V`` are inputs `x` for the layer,
``W^Q, W^K, W^V, W^O`` are parameters `ps`,
and the layer has no states `st`.
2025-01-28 22:19:46 +09:00
"""
struct MultiheadAttention{F} <: LuxCore.AbstractLuxLayer
embed_dim::Int
2025-02-03 22:09:23 +09:00
qdim::Int
kvdim::Int
v_embed_dim::Int
2025-01-28 22:19:46 +09:00
num_heads::Int
init_weight::F
end
"""
MultiheadAttention(embed_dim::Int, num_heads::Int; init_weight=glorot_uniform, kw...)
Constructor.
# Arguments
- `embed_dim::Int`
- `num_heads::Int`
## Keyword Arguments
- `init_weight`: weight initialzer (rng generator)
2025-02-03 22:09:23 +09:00
- `qdim`: Default `embed_dim`
- `kvdim::Int`: Default: `embed_dim`
- `v_embed_dim`: Default: `embed_dim`
2025-01-28 22:19:46 +09:00
# Parameters and states
## Parameters
2025-02-03 22:12:34 +09:00
- `weight_q`: ``W^Q``
- `weight_k`: ``W^K``
- `weight_v`: ``W^V``
- `weight_o`: ``W^O``
## States
MultiheadAttention has no states.
# Inputs
NamedTuple of these three variables.
2025-02-03 22:12:34 +09:00
- `q`: ``Q``
- `k`: ``K``
- `v`: ``V``
2025-01-28 22:19:46 +09:00
"""
function MultiheadAttention(
embed_dim::Int,
num_heads::Int;
init_weight = glorot_uniform,
kw...,
)
MultiheadAttention{typeof(init_weight)}(
embed_dim,
2025-02-03 22:09:23 +09:00
haskey(kw, :qdim) ? kw[:qdim] : embed_dim,
haskey(kw, :kvdim) ? kw[:kvdim] : embed_dim,
haskey(kw, :v_embed_dim) ? kw[:v_embed_dim] : embed_dim,
2025-01-28 22:19:46 +09:00
num_heads,
init_weight,
)
end
function LuxCore.initialparameters(rng::AbstractRNG, l::MultiheadAttention)
# see the original paper for weight dimensions (note that q,k,v weights have `num_heads` of matrices)
(
2025-02-03 22:09:23 +09:00
weight_q = l.init_weight(rng, l.embed_dim * l.num_heads, l.qdim),
weight_k = l.init_weight(rng, l.embed_dim * l.num_heads, l.kvdim),
weight_v = l.init_weight(rng, l.v_embed_dim * l.num_heads, l.kvdim),
weight_o = l.init_weight(rng, l.v_embed_dim, l.v_embed_dim * l.num_heads), # TODO: next here maybe finished?
2025-01-28 22:19:46 +09:00
)
end
function LuxCore.initialstates(::AbstractRNG, ::MultiheadAttention)
NamedTuple()
end
function LuxCore.parameterlength(l::MultiheadAttention)
dim_weight_q = l.embed_dim * l.num_heads * l.qdim
dim_weight_k = l.embed_dim * l.num_heads * l.kvdim
dim_weight_v = l.v_embed_dim * l.num_heads * l.kvdim
dim_weight_o = l.embed_dim * l.v_embed_dim * l.num_heads
dim_weight_q + dim_weight_k + dim_weight_v + dim_weight_o
end
function LuxCore.statelength(l::MultiheadAttention)
0
end
2025-02-03 22:12:34 +09:00
function (l::MultiheadAttention)(x::NamedTuple, ps, _st::NamedTuple)
2025-01-28 22:19:46 +09:00
if size(x.q, 1) != l.embed_dim
ArgumentError(
"Length of queue must match the layer's embed_dim: size(q)[1] = $(size(x.q, 1)), embed_dim = $(l.embed_dim)",
) |> throw
end
2025-02-03 22:09:23 +09:00
if size(x.k, 1) != l.kvdim
2025-01-28 22:19:46 +09:00
ArgumentError(
2025-02-03 22:09:23 +09:00
"Length of key must match the layer's kvdim: size(k)[1] = $(size(x.k, 1)), kvdim = $(l.kvdim)",
2025-01-28 22:19:46 +09:00
) |> throw
end
2025-02-03 22:09:23 +09:00
if size(x.v, 1) != l.kvdim
2025-01-28 22:19:46 +09:00
ArgumentError(
2025-02-03 22:09:23 +09:00
"Length of value must match the layer's kvdim: size(v)[1] = $(size(x.v, 1)), kvdim = $(l.kvdim)",
2025-01-28 22:19:46 +09:00
) |> throw
end
# TODO
# qk_dim, v_dim is divisible by num_heads. qk_dim = embed_dim * num_heads
# [q] = (qk_dim, q_len, batch_size...)
q = ps.weight_q * x.q
# [k] = (qk_dim, kv_len, batch_size...)
k = ps.weight_k * x.k
# [v] = (v_dim, kv_len, batch_size...)
2025-02-03 22:09:23 +09:00
v = ps.weight_v * x.v
2025-01-28 22:19:46 +09:00
# [y] = (v_dim, q_len, batch_size...)
2025-02-03 22:09:23 +09:00
# [α] = (kv_len, q_len, nheads, batch_size...)
2025-01-28 22:19:46 +09:00
y, α = dot_product_attention(q, k, v; nheads = l.num_heads)
ps.weight_o * y, _st
2025-01-28 22:19:46 +09:00
end
"""
TransformerEncoderLayer <: LuxCore.AbstractLuxLayer
One layer of encoder block of Transformer model.
# Structure
It consists of two sublayers, `MultiheadAttention` and feed forward network(two Dense layers).
Both of them are wrapped with residual connection and followed by [`Lux.Dropout`](@ref) and [`Lux.LayerNorm`](@ref).
They are combined using [`Chain`](@ref) and [`SkipConnection`](@ref).
See the constructor of this layer or displayed layer to see the structure.
## MultiheadAttention sublayer
```
========= SkipConnection ==========
-> MultiheadAttention -> Dropout -->
-- +(add) -> LayerNorm
-> -------------------------------->
```
## FeedForwardNetworkSubLayer
The core is two chained `Dense` layer, which has internal dimension `feedforward_dim`.
Then this is wrapped with `SkipConnection` and followed by `LayerNorm`.
# Parameters & States
Since this layer is implemented as [`LuxCore.AbstractLuxContainerLayer`](@ref),
both parameters and states have structured as the container layer.
So see the "Structure" section for more detail.
# Inputs
AbstractArray with `size(x, 1) == model_dim`. (same as Dense)
"""
struct TransformerEncoderLayer{LSA, LFFN} <: LuxCore.AbstractLuxContainerLayer{(
:sublayer_self_attention,
:sublayer_feed_forward_network,
)}
sublayer_self_attention::LSA
sublayer_feed_forward_network::LFFN
end
"""
TransformerEncoderLayer(
model_dim::Int,
num_heads::Int;
feedforward_dim::Int = 2048,
dropout::T1 = 0.1,
activation::F = relu,
layer_norm_eps::T2 = 1e-5,
) where {F, T1 <: AbstractFloat, T2 <: AbstractFloat}
Constructor of [`TransformerEncoderLayer`](@ref).
# Arguments
- `model_dim::Int`: model input size
- `num_heads::Int`: number of heads of MultiheadAttention
- `feedforward_dim::Int = 2048`: dimension of feed forward network
- `dropout::T1 = 0.1`: dropout rate for all Dropout layers
- `activation::F = relu`: activation used in feed forward network
- `layer_norm_epsilon::T2 = 1e-5`: eps of LayerNorm
"""
function TransformerEncoderLayer(
model_dim::Int,
num_heads::Int;
feedforward_dim::Int = 2048,
dropout::T1 = 0.1,
activation::F = relu,
layer_norm_epsilon::T2 = 1.0f-5,
) where {F, T1 <: AbstractFloat, T2 <: AbstractFloat}
sublayer_self_attention = let
layer_split = Lux.WrappedFunction(x -> (q = x, k = x, v = x))
layer_self_attention = MultiheadAttention(model_dim, num_heads)
layer_dropout = Lux.Dropout(dropout)
layer_residual_connection = Lux.SkipConnection(
Lux.Chain(; layer_split, layer_self_attention, layer_dropout),
+,
)
Lux.Chain(;
layer_residual_connection,
layer_layer_norm = Lux.LayerNorm(model_dim; epsilon = layer_norm_epsilon),
name = "SelfAttentionSubLayer",
)
end
sublayer_feed_forward_network = let
layer_feed_forward_network = Lux.Chain(
Lux.Dense(model_dim => feedforward_dim, activation),
Lux.Dropout(dropout),
Lux.Dense(feedforward_dim => model_dim, activation),
Lux.Dropout(dropout),
)
layer_residual_connection = Lux.SkipConnection(layer_feed_forward_network, +)
Lux.Chain(;
layer_residual_connection,
layer_layer_norm = Lux.LayerNorm(model_dim; epsilon = layer_norm_epsilon),
name = "FeedForwardNetworkSubLayer",
)
end
TransformerEncoderLayer(sublayer_self_attention, sublayer_feed_forward_network)
end
function (encoder::TransformerEncoderLayer)(x, ps, st)
x, st_sublayer_self_attention = Lux.apply(
encoder.sublayer_self_attention,
x,
ps.sublayer_self_attention,
st.sublayer_self_attention,
)
x, st_sublayer_feed_forward_network = Lux.apply(
encoder.sublayer_feed_forward_network,
x,
ps.sublayer_feed_forward_network,
st.sublayer_feed_forward_network,
)
return x,
(
sublayer_self_attention = st_sublayer_self_attention,
sublayer_feed_forward_network = st_sublayer_feed_forward_network,
)
end