new(transformer): implement TransformerEncoderLayer and add test

This commit is contained in:
qwjyh 2025-02-15 18:12:55 +09:00
parent e3765c80d7
commit 5bdcb56725
2 changed files with 164 additions and 18 deletions

View file

@ -4,22 +4,28 @@ true || include("transformers.jl")
using Random using Random
const EMBED_DIM = 10 const INPUT_DIM = 10
const NUM_HEADS = 2 const NUM_HEADS = 1
const KV_DIM = 12
rng = TaskLocalRNG() rng = Random.default_rng()
l = MultiheadAttention(EMBED_DIM, NUM_HEADS, kvdim = KV_DIM) model = TransformerEncoderLayer(10, 2)
@info "layer" l @info "model" model
ps = LuxCore.initialparameters(rng, l) ps, st = LuxCore.setup(rng, model)
st = LuxCore.initialstates(rng, l) @info "parameters" ps
@info "parameters and states" ps st @info "status" st
q = rand(rng, Float32, (EMBED_DIM,)) # Unbatched
k = rand(rng, Float32, (KV_DIM,)) x = randn(rng, Float32, (10,))
v = rand(rng, Float32, (KV_DIM,)) @info "input" size(x)
@info "q k v" summary.((q, k, v))
l((; q, k, v), ps, st) y, st = model(x, ps, st)
@info "output" y st
# Batched
x = randn(rng, Float32, (10, 10))
@info "input" size(x)
y, st = model(x, ps, st)
@info "output" y st

View file

@ -3,6 +3,10 @@ using Random: AbstractRNG
using Lux using Lux
""" """
MultiheadAttention{F} <: LuxCore.AbstractLuxLayer
Multi head attention layer used in Transformer model.
# Fields # Fields
- `embed_dim`: Queue vector length. `q_len` - `embed_dim`: Queue vector length. `q_len`
- `kvdim::Int`: Key vector and value vector length. - `kvdim::Int`: Key vector and value vector length.
@ -63,6 +67,7 @@ Constructor.
MultiheadAttention has no states. MultiheadAttention has no states.
# Inputs # Inputs
NamedTuple of these three variables.
- `q`: ``Q`` - `q`: ``Q``
- `k`: ``K`` - `k`: ``K``
- `v`: ``V`` - `v`: ``V``
@ -97,6 +102,18 @@ function LuxCore.initialstates(::AbstractRNG, ::MultiheadAttention)
NamedTuple() NamedTuple()
end end
function LuxCore.parameterlength(l::MultiheadAttention)
dim_weight_q = l.embed_dim * l.num_heads * l.qdim
dim_weight_k = l.embed_dim * l.num_heads * l.kvdim
dim_weight_v = l.v_embed_dim * l.num_heads * l.kvdim
dim_weight_o = l.embed_dim * l.v_embed_dim * l.num_heads
dim_weight_q + dim_weight_k + dim_weight_v + dim_weight_o
end
function LuxCore.statelength(l::MultiheadAttention)
0
end
function (l::MultiheadAttention)(x::NamedTuple, ps, _st::NamedTuple) function (l::MultiheadAttention)(x::NamedTuple, ps, _st::NamedTuple)
if size(x.q, 1) != l.embed_dim if size(x.q, 1) != l.embed_dim
ArgumentError( ArgumentError(
@ -125,9 +142,132 @@ function (l::MultiheadAttention)(x::NamedTuple, ps, _st::NamedTuple)
# [y] = (v_dim, q_len, batch_size...) # [y] = (v_dim, q_len, batch_size...)
# [α] = (kv_len, q_len, nheads, batch_size...) # [α] = (kv_len, q_len, nheads, batch_size...)
y, α = dot_product_attention(q, k, v; nheads = l.num_heads) y, α = dot_product_attention(q, k, v; nheads = l.num_heads)
ps.weight_o * y ps.weight_o * y, _st
end end
# struct TransformerEncoder <: LuxCore.AbstractLuxContainerLayer{} """
# end TransformerEncoderLayer <: LuxCore.AbstractLuxLayer
#
One layer of encoder block of Transformer model.
# Structure
It consists of two sublayers, `MultiheadAttention` and feed forward network(two Dense layers).
Both of them are wrapped with residual connection and followed by [`Lux.Dropout`](@ref) and [`Lux.LayerNorm`](@ref).
They are combined using [`Chain`](@ref) and [`SkipConnection`](@ref).
See the constructor of this layer or displayed layer to see the structure.
## MultiheadAttention sublayer
```
========= SkipConnection ==========
-> MultiheadAttention -> Dropout -->
-- +(add) -> LayerNorm
-> -------------------------------->
```
## FeedForwardNetworkSubLayer
The core is two chained `Dense` layer, which has internal dimension `feedforward_dim`.
Then this is wrapped with `SkipConnection` and followed by `LayerNorm`.
# Parameters & States
Since this layer is implemented as [`LuxCore.AbstractLuxContainerLayer`](@ref),
both parameters and states have structured as the container layer.
So see the "Structure" section for more detail.
# Inputs
AbstractArray with `size(x, 1) == model_dim`. (same as Dense)
"""
struct TransformerEncoderLayer{LSA, LFFN} <: LuxCore.AbstractLuxContainerLayer{(
:sublayer_self_attention,
:sublayer_feed_forward_network,
)}
sublayer_self_attention::LSA
sublayer_feed_forward_network::LFFN
end
"""
TransformerEncoderLayer(
model_dim::Int,
num_heads::Int;
feedforward_dim::Int = 2048,
dropout::T1 = 0.1,
activation::F = relu,
layer_norm_eps::T2 = 1e-5,
) where {F, T1 <: AbstractFloat, T2 <: AbstractFloat}
Constructor of [`TransformerEncoderLayer`](@ref).
# Arguments
- `model_dim::Int`: model input size
- `num_heads::Int`: number of heads of MultiheadAttention
- `feedforward_dim::Int = 2048`: dimension of feed forward network
- `dropout::T1 = 0.1`: dropout rate for all Dropout layers
- `activation::F = relu`: activation used in feed forward network
- `layer_norm_epsilon::T2 = 1e-5`: eps of LayerNorm
"""
function TransformerEncoderLayer(
model_dim::Int,
num_heads::Int;
feedforward_dim::Int = 2048,
dropout::T1 = 0.1,
activation::F = relu,
layer_norm_epsilon::T2 = 1.0f-5,
) where {F, T1 <: AbstractFloat, T2 <: AbstractFloat}
sublayer_self_attention = let
layer_split = Lux.WrappedFunction(x -> (q = x, k = x, v = x))
layer_self_attention = MultiheadAttention(model_dim, num_heads)
layer_dropout = Lux.Dropout(dropout)
layer_residual_connection = Lux.SkipConnection(
Lux.Chain(; layer_split, layer_self_attention, layer_dropout),
+,
)
Lux.Chain(;
layer_residual_connection,
layer_layer_norm = Lux.LayerNorm(model_dim; epsilon = layer_norm_epsilon),
name = "SelfAttentionSubLayer",
)
end
sublayer_feed_forward_network = let
layer_feed_forward_network = Lux.Chain(
Lux.Dense(model_dim => feedforward_dim, activation),
Lux.Dropout(dropout),
Lux.Dense(feedforward_dim => model_dim, activation),
Lux.Dropout(dropout),
)
layer_residual_connection = Lux.SkipConnection(layer_feed_forward_network, +)
Lux.Chain(;
layer_residual_connection,
layer_layer_norm = Lux.LayerNorm(model_dim; epsilon = layer_norm_epsilon),
name = "FeedForwardNetworkSubLayer",
)
end
TransformerEncoderLayer(sublayer_self_attention, sublayer_feed_forward_network)
end
function (encoder::TransformerEncoderLayer)(x, ps, st)
x, st_sublayer_self_attention = Lux.apply(
encoder.sublayer_self_attention,
x,
ps.sublayer_self_attention,
st.sublayer_self_attention,
)
x, st_sublayer_feed_forward_network = Lux.apply(
encoder.sublayer_feed_forward_network,
x,
ps.sublayer_feed_forward_network,
st.sublayer_feed_forward_network,
)
return x,
(
sublayer_self_attention = st_sublayer_self_attention,
sublayer_feed_forward_network = st_sublayer_feed_forward_network,
)
end