(WIP): implement MultiheadAttention
This commit is contained in:
parent
6a91ef35e1
commit
c07d9c30cc
2 changed files with 127 additions and 0 deletions
24
test_transformer.jl
Normal file
24
test_transformer.jl
Normal file
|
@ -0,0 +1,24 @@
|
|||
# test code
|
||||
|
||||
true || include("transformers.jl")
|
||||
|
||||
using Random
|
||||
|
||||
const EMBED_DIM = 10
|
||||
const NUM_HEADS = 10
|
||||
|
||||
rng = TaskLocalRNG()
|
||||
|
||||
l = MultiheadAttention(EMBED_DIM, NUM_HEADS, vdim = 8)
|
||||
@info "layer" l
|
||||
|
||||
ps = LuxCore.initialparameters(rng, l)
|
||||
st = LuxCore.initialstates(rng, l)
|
||||
@info "parameters and states" ps st
|
||||
|
||||
q = rand(rng, Float32, (EMBED_DIM,))
|
||||
k = rand(rng, Float32, (EMBED_DIM,))
|
||||
v = rand(rng, Float32, (EMBED_DIM,))
|
||||
@info "q k v" summary.((q, k, v))
|
||||
|
||||
l((; q, k, v), ps, st)
|
103
transformers.jl
Normal file
103
transformers.jl
Normal file
|
@ -0,0 +1,103 @@
|
|||
# using LuxCore
|
||||
using Random: AbstractRNG
|
||||
using Lux
|
||||
|
||||
"""
|
||||
# Fields
|
||||
- `embed_dim`: Queue vector length. `q_len`
|
||||
- `kdim::Int`: Key vector length.
|
||||
- `vdim::Int`: Value vector length
|
||||
- `num_heads`: Number of heads.
|
||||
"""
|
||||
struct MultiheadAttention{F} <: LuxCore.AbstractLuxLayer
|
||||
embed_dim::Int
|
||||
kdim::Int
|
||||
vdim::Int
|
||||
num_heads::Int
|
||||
init_weight::F
|
||||
end
|
||||
|
||||
"""
|
||||
MultiheadAttention(embed_dim::Int, num_heads::Int; init_weight=glorot_uniform, kw...)
|
||||
|
||||
Constructor.
|
||||
|
||||
# Arguments
|
||||
- `embed_dim::Int`
|
||||
- `num_heads::Int`
|
||||
|
||||
## Keyword Arguments
|
||||
- `init_weight`: weight initialzer (rng generator)
|
||||
- `kdim::Int`: Default: `embed_dim`
|
||||
- `vdim::Int`: Default: `embed_dim`
|
||||
|
||||
# Parameters and states
|
||||
|
||||
## Parameters
|
||||
|
||||
"""
|
||||
function MultiheadAttention(
|
||||
embed_dim::Int,
|
||||
num_heads::Int;
|
||||
init_weight = glorot_uniform,
|
||||
kw...,
|
||||
)
|
||||
MultiheadAttention{typeof(init_weight)}(
|
||||
embed_dim,
|
||||
haskey(kw, :kdim) ? kw[:kdim] : embed_dim,
|
||||
haskey(kw, :vdim) ? kw[:vdim] : embed_dim,
|
||||
num_heads,
|
||||
init_weight,
|
||||
)
|
||||
end
|
||||
|
||||
function LuxCore.initialparameters(rng::AbstractRNG, l::MultiheadAttention)
|
||||
# see the original paper for weight dimensions (note that q,k,v weights have `num_heads` of matrices)
|
||||
(
|
||||
weight_q = l.init_weight(rng, l.embed_dim * l.num_heads, l.embed_dim),
|
||||
weight_k = l.init_weight(rng, l.embed_dim * l.num_heads, l.kdim),
|
||||
weight_v = l.init_weight(rng, l.embed_dim * l.num_heads, l.vdim),
|
||||
weight_o = l.init_weight(rng, 10), # TODO
|
||||
)
|
||||
end
|
||||
|
||||
function LuxCore.initialstates(::AbstractRNG, ::MultiheadAttention)
|
||||
NamedTuple()
|
||||
end
|
||||
|
||||
function (l::MultiheadAttention)(
|
||||
x::NamedTuple,
|
||||
ps,
|
||||
st::NamedTuple,
|
||||
)
|
||||
if size(x.q, 1) != l.embed_dim
|
||||
ArgumentError(
|
||||
"Length of queue must match the layer's embed_dim: size(q)[1] = $(size(x.q, 1)), embed_dim = $(l.embed_dim)",
|
||||
) |> throw
|
||||
end
|
||||
if size(x.k, 1) != l.kdim
|
||||
ArgumentError(
|
||||
"Length of key must match the layer's kdim: size(k)[1] = $(size(x.k, 1)), kdim = $(l.kdim)",
|
||||
) |> throw
|
||||
end
|
||||
if size(x.v, 1) != l.vdim
|
||||
ArgumentError(
|
||||
"Length of value must match the layer's vdim: size(v)[1] = $(size(x.v, 1)), vdim = $(l.vdim)",
|
||||
) |> throw
|
||||
end
|
||||
# TODO
|
||||
|
||||
# qk_dim, v_dim is divisible by num_heads. qk_dim = embed_dim * num_heads
|
||||
# [q] = (qk_dim, q_len, batch_size...)
|
||||
q = ps.weight_q * x.q
|
||||
# [k] = (qk_dim, kv_len, batch_size...)
|
||||
k = ps.weight_k * x.k
|
||||
# [v] = (v_dim, kv_len, batch_size...)
|
||||
v = ps.weight_v * x.v # TODO: dimension?? 2025-01-28T21:59:56+09:00
|
||||
# [y] = (v_dim, q_len, batch_size...)
|
||||
y, α = dot_product_attention(q, k, v; nheads = l.num_heads)
|
||||
end
|
||||
|
||||
# struct TransformerEncoder <: LuxCore.AbstractLuxContainerLayer{}
|
||||
# end
|
||||
#
|
Loading…
Reference in a new issue