# using LuxCore using Random: AbstractRNG using Lux """ # Fields - `embed_dim`: Queue vector length. `q_len` - `kvdim::Int`: Key vector and value vector length. - `num_heads`: Number of heads. # Calculation ```math \\begin{aligned} Q &\\in \\mathbb{R}^{qdim} \\\\ W^Q &\\in M_{embed \\times qdim}(\\mathbb{R}) \\\\ K &\\in \\mathbb{R}^{kvdim} \\\\ W^K &\\in M_{embed \\times kvdim}(\\mathbb{R}) \\\\ V &\\in \\mathbb{R}^{kvdim} \\\\ W^V &\\in M_{vembed \\times kvdim}(\\mathbb{R}) \\\\ head_i &= \\operatorname{Attention}(W^Q_i Q, W^K_ K, W^V_i V) \\\\ \\operatorname{Attention}(Q, K, V) &= V \\operatorname{softmax}\\left(\\frac{K^T Q}{\\sqrt{kvdim}} \\right) \\\\ \\operatorname{MultiheadAttention}(Q, K, V) &= W^O \\operatorname{Concat}(head_1, \\ldots, head_h) \\end{aligned} ``` So far, ``Q, K, V`` are inputs `x` for the layer, ``W^Q, W^K, W^V, W^O`` are parameters `ps`, and the layer has no states `st`. """ struct MultiheadAttention{F} <: LuxCore.AbstractLuxLayer embed_dim::Int qdim::Int kvdim::Int v_embed_dim::Int num_heads::Int init_weight::F end """ MultiheadAttention(embed_dim::Int, num_heads::Int; init_weight=glorot_uniform, kw...) Constructor. # Arguments - `embed_dim::Int` - `num_heads::Int` ## Keyword Arguments - `init_weight`: weight initialzer (rng generator) - `qdim`: Default `embed_dim` - `kvdim::Int`: Default: `embed_dim` - `v_embed_dim`: Default: `embed_dim` # Parameters and states ## Parameters - `weight_q` TODO """ function MultiheadAttention( embed_dim::Int, num_heads::Int; init_weight = glorot_uniform, kw..., ) MultiheadAttention{typeof(init_weight)}( embed_dim, haskey(kw, :qdim) ? kw[:qdim] : embed_dim, haskey(kw, :kvdim) ? kw[:kvdim] : embed_dim, haskey(kw, :v_embed_dim) ? kw[:v_embed_dim] : embed_dim, num_heads, init_weight, ) end function LuxCore.initialparameters(rng::AbstractRNG, l::MultiheadAttention) # see the original paper for weight dimensions (note that q,k,v weights have `num_heads` of matrices) ( weight_q = l.init_weight(rng, l.embed_dim * l.num_heads, l.qdim), weight_k = l.init_weight(rng, l.embed_dim * l.num_heads, l.kvdim), weight_v = l.init_weight(rng, l.v_embed_dim * l.num_heads, l.kvdim), weight_o = l.init_weight(rng, l.v_embed_dim, l.v_embed_dim * l.num_heads), # TODO: next here maybe finished? ) end function LuxCore.initialstates(::AbstractRNG, ::MultiheadAttention) NamedTuple() end function (l::MultiheadAttention)(x::NamedTuple, ps, st::NamedTuple) if size(x.q, 1) != l.embed_dim ArgumentError( "Length of queue must match the layer's embed_dim: size(q)[1] = $(size(x.q, 1)), embed_dim = $(l.embed_dim)", ) |> throw end if size(x.k, 1) != l.kvdim ArgumentError( "Length of key must match the layer's kvdim: size(k)[1] = $(size(x.k, 1)), kvdim = $(l.kvdim)", ) |> throw end if size(x.v, 1) != l.kvdim ArgumentError( "Length of value must match the layer's kvdim: size(v)[1] = $(size(x.v, 1)), kvdim = $(l.kvdim)", ) |> throw end # TODO # qk_dim, v_dim is divisible by num_heads. qk_dim = embed_dim * num_heads # [q] = (qk_dim, q_len, batch_size...) q = ps.weight_q * x.q # [k] = (qk_dim, kv_len, batch_size...) k = ps.weight_k * x.k # [v] = (v_dim, kv_len, batch_size...) v = ps.weight_v * x.v # [y] = (v_dim, q_len, batch_size...) # [α] = (kv_len, q_len, nheads, batch_size...) y, α = dot_product_attention(q, k, v; nheads = l.num_heads) ps.weight_o * y end # struct TransformerEncoder <: LuxCore.AbstractLuxContainerLayer{} # end #